Вконтакте Facebook Twitter Лента RSS

Строение и химические свойства галогенов и их соединений. Галогены — Гипермаркет знаний Общая характеристика химические свойства галогенов

Из учебника химии многие знают, что к галогенам относятся химические элементы периодической системы Менделеева из 17 группы в таблице.

С греческого переводится как рождение, происхождение. Практически все они высокоактивны, благодаря чему бурно реагируют с простыми веществами за исключением нескольких неметаллов. Что же такое галогены и каковы их свойства?

Вконтакте

Перечень галогенов

Галогены являются хорошими окислителями, по этой причине в природе их можно встретить только в каких-либо соединениях. Чем выше порядковый номер, тем химическая активность элементов этой группы меньше. К группе галогенов относятся нижеперечисленные элементы:

  • хлор (Cl);
  • фтор (F);
  • иод (I);
  • бром (Br);
  • астат (At).

Последний разработан в институте ядерных исследований, который расположен в городе Дубна. Фтор относится к ядовитым газам бледно-жёлтого цвета. Хлор также ядовит. Это газ, имеющий довольно резкий и неприятный запах светло-зелёного цвета. Бром имеет красно-бурый окрас, это ядовитая жидкость, которая может даже поражать обоняние. Он очень летуч, поэтому его хранят в ампулах. Йод — кристаллическое легко возгоняющееся вещество тёмно-фиолетового цвета. Астат радиоактивен, цвет кристаллов: чёрный с синевой, период полураспада составляет 8,1 часа.

Высокая активность окисления галогенов падает от фтора к иоду. Самым активным из собратьев является фтор, который имеет свойство вступать в реакцию с любыми металлами, образуя соли , некоторые из них при этом самовоспламеняются, при этом выделяется огромное количество тепла. Без нагрева этот элемент реагирует почти со всеми неметаллами , реакции сопровождаются выделением некоторого количества теплоты (экзотермические).

С инертными газами фтор вступает во взаимодействие, при этом облучаясь (Хе + F 2 = XeF 2 + 152 кДж). Нагреваясь, фтор влияет на другие галогены, окисляя их. Имеет место формула: Hal 2 + F 2 = 2НalF, где Hal = Cl, Br, I, At, в случае, когда HalF степени окисления хлора, брома, иода и астата равны + 1.

Со сложными веществами фтор также взаимодействует довольно энергично. Следствием является окисление воды. При этом происходит взрывная реакция, которая коротко записывается формулой: 3F 2 + ЗН 2 О = OF 2 + 4HF + Н 2 О 2.

Хлор

Активность свободного хлора несколько меньше, в сравнении со фтором, но он также имеет хорошую способность вступать в реакцию. Это может происходить при взаимодействии со многими простыми веществами, за редким исключением в виде кислорода, азота, инертных газов. Он может бурно реагировать со сложными веществами , создавая реакции замещения, свойство присоединения углеводородов — это тоже присуще хлору. При нагреве происходит вытеснение брома или йода из соединений с водородом или металлами.

Своеобразные отношения у этого элемента с водородом. При комнатной температуре и без попадания света, хлор никак не реагирует на этот газ, но стоит его лишь нагреть или направить свет, произойдёт взрывная цепная реакция. Формула приведена ниже:

Cl 2 + h ν → 2Cl , Cl + Н 2 → HCl + Н, Н + Cl 2 → HCl + Cl , Cl + Н 2 → HCl + Н и т. д.

Фотоны, возбуждаясь, вызывают разложение на атомы молекул Cl 2, при этом возникает цепная реакция, вызывая появление новых частиц, которые инициируют начало следующей стадии. В истории химии это явление было исследовано. Русский химик и лауреат Нобелевской премии Семёнов Н.Н. в 1956 году занимался изучением цепной фотохимической реакции и внёс тем самым большой вклад в науку.

Хлор реагирует со многими сложными веществами, это реакции замещения и присоединения. Он хорошо растворяется в воде.

Cl 2 + Н 2 О = HCl + HClO - 25 кДж.

Со щелочами при нагреве хлор может диспропорционировать .

Бром, йод и астат

Химическая активность брома чуть меньше, чем у вышеназванных фтора или хлора, однако она тоже довольно велика. Бром часто применяют в жидком виде. Он, как и хлор, очень хорошо растворяется в воде. Происходит частичная реакция с ней, позволяющая получать «бромную воду».

Химическая активность йода заметно отличается от остальных представителей этого ряда. Он почти не взаимодействует с неметаллами, а с металлами реакция идёт очень медленно и только при нагреве . При этом происходит большое поглощение тепла (эндотермическая реакция), которая сильно обратима. К тому же йод нельзя никаким образом растворить в воде , этого не достичь даже при нагреве, поэтому в природе не бывает «йодной воды». Йод можно растворить только в растворе йодида. При этом образуются комплексные анионы . В медицине такое соединение называется раствором Люголя.

Астат реагирует с металлами и водородом. В ряду галогенов химическая активность уменьшается по направлению от фтора к астату. Каждый галоген в ряду F - At способен вытеснять после­дующие элементы из соединений с металлами или водородом. Астат — самый пассивный среди этих элементов. Но ему присуще взаимодействие с металлами.

Применение

Химия прочно входит в нашу жизнь, внедряясь во все сферы. Человек научился применять галогены, а также его соединения на своё благо. Биологическое значение галогенов неоспоримо. Области применения их различны:

  • медицина;
  • фармакология;
  • производство различных пластмасс, красителей и т. д.;
  • сельское хозяйство.

Из природного соединение криолита, химическая формула которого выглядит следующим образом: Na3AlF6, получают алюминий . Соединения фтора нашли широкое распространение при производстве зубных паст . Фтор, как известно, служит для профилактики кариеса. Спиртовую настойку йода применяют для дезинфекции и обеззараживания ран .

Наиболее широкое применение в нашей жизни нашёл хлор. Область его применения довольно многообразна. Примеры использования:

  1. Производство пластмасс.
  2. Получение соляной кислоты.
  3. Производство синтетического волокна, растворителей, каучуков и др.
  4. Отбеливание тканей (льняных и хлопчатобумажных), бумаги.
  5. Обеззараживание питьевой воды. Но всё чаще для этой цели используется озон, так как применение хлора вредно для организма человека.
  6. Дезинфекция помещений

Нужно помнить, что галогены — очень токсичные вещества. Особенно ярко это свойство выражено у фтора. Галогены могут оказывать удушающее и воздействие на органы дыхания и поражать биологические ткани.

Огромную опасность могут иметь пары хлора, а также аэрозоль фтора, имеющий слабый запах, он может ощутиться при большой концентрации. Человек может получить эффект удушья. При работе с такими соединениями нужно соблюдать меры предосторожности.

Методы производства галогенов сложные и многообразные. В промышленности к этому подходят с определёнными требованиями, соблюдение которых неукоснительно соблюдаются.

Лекция 3. Кислородные соединения галогенов

    Оксиды галогенов.

    Применение галогенов и их соединений.

1. Оксиды галогенов

Галогены образуют ряд соединений с кислородом. Но эти соединения неустойчивы, ∆G o >0, они легко взрываются при нагревании и в присутствии органических соединений. Их получают только косвенным путем.

Относительно устойчивы следующие кислородные соединения галогенов:

Свойства

Внешний вид при н.у.

Желтый газ

Желто-коричн. газ. Ядовит

Желто-зелен. газ.

Темно-красная жидкость

Бесцветная жидкость. Взрывоопасна

Бесцв. крист. вещество

Темп. пл., о С

(устойчивее остальных оксидов)

Разл. при t>350 o C

∆G o , кДж/моль

Строение молекул

→ Усиление окислительной активности →

Также известны Cl 2 O 3 , Br 2 O 3 , BrO 2 , Br 2 O 5 , I 2 O 4 , I 2 O 6 .

Получение.

OF 2 (оксид фтора, или правильнее – фторид кислорода) – сильнейший окислитель. Его получают действием F 2 на охлажденный разбавленный раствор щелочи:

Оксиды хлора и йода можно получить по реакциям:

Химические свойства:

    Термически неустойчивы:

    Все соединения галогенов с кислородом (кроме OF 2) – кислотные оксиды.

Cl 2 O, Cl 2 O 7 , I 2 O 5 при взаимодействии с водой образуют кислоты:

ClO 2 , Cl 2 O 6 (С.О.=+4, +6 – неустойчивы) при взаимодействии с водой диспропорционируют:

    Оксиды галогенов – окислители:

OF 2 содержит O +2 – очень сильный окислитель:

    Оксиды с промежуточной степени окисления галогена диспропорционируют:

    Кислородсодержащие кислоты галогенов

Все кислородсодержащие кислоты галогенов хорошо растворимы в воде. HClO 4 , HIO 3 и H 5 IO 6 известны в свободном виде, остальные нестойки, существуют только в разбавленный водных растворах. Наиболее стабильны соединения в С.О. -1 и +5.

Внешний вид

Кисл.-осн. свойства

Названия кислот

Названия солей

Существуют только в растворе

Слабые кислоты

Амфотерное соед.

Фторноватистая

Хлорноватистая

Бромноватистая

Иодноватистая

Гипофториты

Гипохлориты

Гипобромиты

Гипоиодиты

Кислота средн. силы

Хлористая

Бесцв. кристаллы

Сильные кислоты

Хлорноватая

Бромноватая

Иодноватая

Бесцв. жидкость

Бесцв. кристаллы

Самая сильная кислота

Слабая кислота

Ортоодная

Перхлораты

Перброматы

Периодаты

Сравнение силы кислот

Строение кислородных кислот хлора:

Изменение свойств в ряду кислородных кислот хлора можно показать схемой:

Эта закономерность характерна не только для хлора, но и для брома и иода.

При возрастании степени окисления галогена увеличивается заряд иона, это усиливает притяжение его к O 2- , и затрудняет диссоциацию по типу основания. Вместе с этим увеличивается отталкивание положительный ионов H + и Э n + , это облегчает диссоциацию по типу кислоты.

Рис. 1. Схема фрагмента молекулы Э(ОН) n

HOCl – амфотерное соединение: может диссоциировать и по типу кислоты, и по типу основания:

В ряду ClO - - ClO 2 - - ClO 3 - - ClO 4 - увеличивается устойчивость кислот и анионов. Это объясняется увеличением числа электронов, принимающих участие в образовании связей:

Кратность связи =1 Кратность связи=1,5

d(Cl-O)=0,170 нм d(Cl-O)=0,145 нм

С увеличением количества атомов кислорода в кислотах, увеличивается экранирование Cl, поэтому окислительная способность палает.

Таким образом, в ряду НClO → НClO 2 → НClO 3 → HClO 4

    усиливается сила кислот;

    увеличивается устойчивость кислот;

    уменьшается окислительная способность.

Сила кислородсодержащих кислот в ряду HOCl-HOBr-HOI уменьшается из-за увеличения ковалентного радиуса и ослабления связи O-Hal:

К д 5∙10 -8 2∙10 -9 2∙10 -10

Окислительные свойства уменьшаются

В ряду HCO-HBrO-HIO увеличивается устойчивость кислот. Например, при нагревании или действии света они разлагаются:

, ∆G о (кДж) HClO, HBrO, HIO

Получение.

    Фторноватистую кислоту получают при помощи реакций:

. (при н.у.)!!!

Хлорноватистую кислоту получают гидролизом хлора (НСl удаляют действием СaCO 3):

Равновесие устанавливается, когда прореагирует 30% хлора.

HClO и HBrO получают разложением гипохлоритов и гипобромитов:

2. HClO 2 получают из солей:

3. HHalO 3 получают:

Из солей:

Окислением галогенов сильными окислителями:

4. HClO 4 , H 5 IO 6 из солей:

Химические свойства

    Разлагаются при нагревании и на свету:

    Сильные окислители (все кислоты - более сильные окислители, чем их соли):

Хлорная кислоты – слабый окислитель только в концентрированных растворах:

Соли оксокислот более устойчивы, чем кислоты. Их устойчивость растет с увеличением степени окисления.

Химические свойства солей:

1. Хлораты и перхлораты распадаются только при нагревании:

2. Они, как и кислоты, являются окислителями (но более слабыми, чем их кислоты):

Получение солей:

МеHalO получают пропусканием галогегенов через холодный раствор щелочи, соды, поташа:

МеHalO 3 получают пропусканием галогенов через горячие (60-70 о С) растворы щелочей:

МеClO 4 и Ме 5 IO 6 окислением хлоратов и иодатов при электролизе или слабым нагреванием:

7. Применение

Фтор

Плавиковая кислота используется для травления стекла, удаления остатков песка с металлического литья, в химическом синтезе.

В ядерной промышленности применяют UF 6 .

В качестве хладагентов используют CF 2 Cl 2 .

В металлургии применяют CaF 2 .

Фторопроизводное этилена тетрафторэтилен в результате полимеризации дает ценный полимер – тефлон, устойчив к химическим реагентам и незаменим в производстве веществ особой чистоты, для изготовления аппаратуры.

Фторопроизводные материалы – в медицине, заменители кровеносных сосудов и сердечных клапанов. Изделия из фторопластов широко применяются в авиационной, электротехнической, атомной и др. отраслях.

Хлор

Хлор необходим для синтеза в органическом и полимерном синтезе. Методом хлорной металлургии получают кремний и тугоплавкие цветные металлы (титан, ниобий, тантал и др.).

Применяется как окислитель и для стерилизации питьевой воды.

Соляная кислота и галогениды используется в металлургической, текстильной и пищевой промышленности.

HClO применяется как бактерицидное и отбеливающее средство. Выделяющийся при растворении кислоты атомарный кислород обесцвечивает красители и убивает микробы:

Жавелевая вода – это смесь хлорида и гипохлорита калия, ее получают действием щелочи на «хлорную воду», она обладает отбеливающими свойствами:

Белильная или хлорная известь – белый порошок с резким запахом, применяется как отбеливающее и дезинфицирующее средство:

Бром

Используется в органическом синтезе.

В фотографическом деле используется AgBr.

Соединения брома применяются для производства лекарств.

I 2 необходим для металлургии, его применяют как антисептическое и дезинфицирующее средство. Йод замещает атомы водорода в молекулах белков микроорганизмов, что приводит к их гибели:

Для деревообработки применяют KI.

Cоединения иода применяются для производства лекарств, в пищевых добавках (NaI), для синтеза и в химическом анализа (иодометрия).

Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s 1 . С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:

С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H 2).

В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.

Взаимодействие водорода с простыми веществами

с металлами

Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)

При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:

Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н 2 является окислителем.

с неметаллами

Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!

Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.

При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:

Взаимодействие водорода со сложными веществами

с оксидами металлов

Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:

c оксидами неметаллов

Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.

Смесь CO и H 2 даже имеет свое собственное название – «синтез-газ», поскольку из нее в зависимости от условий могут быть получены такие востребованные продукты промышленности как метанол, формальдегид и даже синтетические углеводороды:

c кислотами

С неорганическими кислотами водород не реагирует!

Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.

c солями

В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:

Химические свойства галогенов

Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.

Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal 2 .

Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке . Возгонкой , называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.

Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns 2 np 5 , где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:

F 2 > Cl 2 > Br 2 > I 2

Взаимодействие галогенов с простыми веществами

Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.

Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.

Взаимодействие галогенов с неметаллами

водородом

При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:

Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:

Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:

фосфором

Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:

При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:

При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.

Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:

серой

Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:

Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:

Взаимодействие галогенов с металлами

Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:

Остальные галогены реагируют со всеми металлами кроме платины и золота:

Реакции галогенов со сложными веществами

Реакции замещения с галогенами

Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:

Аналогичным образом, бром и йод вытесняют серу из растворов сульфидов и или сероводорода:

Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:

Взаимодействие галогенов с водой

Вода горит во фторе синим пламенем в соответствии с уравнением реакции:

Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:

Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.

Взаимодействие галогенов с растворами щелочей

Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:

Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.

В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:

а при нагревании:

Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду.

На валентных орбиталях - 7 электронов ns2np5. Являются сильными окислителями, присоединяя ион - образуют отрицательно заряженные галогениды. Хлор бром йод астат имеют степени гокисления +1 +3 +5 +7, фтор - с самой высокой электроотричательностью, не имеет + СО. F->at радиусы атома возрастают, уменьшается: энергия ионизации, сродство к электрону, электроотрицательность - неметалл свойства - ослабевают. Образуют двухатомные молекула Г2. в ряду F2-Cl2-Br2-I2 прочность связи убывает из за снижения плотности перекрывания валентных орбиталей с ростом гланого кв. числа. В этом же ряду увеличивается ван-дер-ваальсово взаимодействие (рост темп плавления) и снижается окислительная активность

Физические

Фтор - бледно-зеленый газ, температура плавления -219оС, кипения -188оС, в воде растворен быть не может, так как интенсивно с ней взаимодействует. Хлор - желто-зеленый газ, температура плавления -101оС, кипения -34оС, легко сжижается при 20оС и давлении 6 атм (0,6 Мпа), растворимость в воде при 20оС - 2,5 л в 1 л воды. Раствор хлора в воде практически бесцветен и называется хлорной водой. Бром - красно-бурая жидкость, температура плавления -70оС, кипения +59оС, растворимость в воде при 20оС равна 0,02 г в 100 г воды. Раствор брома в воде - бромная вода - бурого цвета. Иод - черно-фиолетовые с металлическим блеском кристаллы, плавятся при +113,6оС, температура кипения жидкого иода +185,5оС. Кристаллический иод легко возгоняется (сублимируется) - переходит из твердого в газообразное состояние. Растворимость в воде при 20оС равна 0,02 г в 100 г воды. Образующийся раствор светло-желтого цвета называется иодной водой. Значительно лучше, чем в воде, иод и бром растворяются в органических растворителях: четыреххлористом углероде, хлороформе, бензоле. Т. кипения/плавления с ряду F2-Cl2-Br2-I2 - -219/-188, -101/-34, -7/60, 113/185

Хим. свойства

Образуют кислородные соединения - оксиды и оксокислоты

Растворимы в спиртах бензоле простых эфирах

В водном растворе все кроме фтора диспропорционируют, равновесие смещается влево

Фтор окисляет воду

Образую галлогениды с металлами

Убывание окислительной активности: Н2 + Г2 =2НГ (фтор в темноте, хлор на свету, бром ещё и при нагреве, а йод - ещё и обратима)

Вытесняют из солец более слабые Г - хлор вытесняет бромиды и йодиды (Cl2 + 2KBr=Br2+2KCl)

Различная окисл. способность влияет на живые организмы - хлор и бром - отравляющие. а йод - антисептик

Применение:

Хлор - поливинилхлорид, хлорбензол и т.д. для отбеливания тканей, очищения воды, дезинфекции, а произвоные (KClO3) являются компонентами ракетного топлива. Бром - как краситель и лекарственный препарат. Иод - получение металлов высокой степени чистоты, как катализатор в орг синтезе, как антисептик и лекарство



Получение:

В природе эти элементы встречаются в основном в виде галогенидов (за исключением иода, который также встречается в виде иодата натрия или калия в месторождениях нитратов щелочных металлов). Поскольку многие хлориды, бромиды и иодиды растворимы в воде, то эти анионы присутствуют в океане и природных рассолах. Основным источником фтора является фторид кальция, который очень малорастворим и находится в осадочных породах (как флюорит CaF2). В промышленности хлор в основном получают электролизом водного раствора хлорида натрия в специальных электролизёрах. Основным способом получения простых веществ является окисление галогенидов Бром получают химическим окислением бромид-иона, находящегося в морской воде. Подобный процесс используется и для получения иода из природных рассолов, богатых I-. В качестве окислителя в обоих случаях используют хлор, обладающий более сильными окислительными свойствами, а образующиеся Br2 и I2 удаляются из раствора потоком воздуха. В природе встречаются следующие стабильные изотопы галогенов: фтора - 19F, хлора - 35Cl и 37Cl, брома - 79Br и 81Br, иода - 127I. Галогены в природе находятся только в виде соединений, причем в состав этих соединений галогены входят (за редчайшим исключением) только в степени окисления -1. Практическое значение имеют минералы фтора: CaF2 - плавиковый шпат, Na2AlF6 - криолит, Ca5F(PO4)3 - фторапатит и минералы хлора: NaCl - каменная соль (это же вещество - главный компонент, обуславливающий соленость морской воды), KСl - сильвин, MgCl2*KCl*6H2O - карналлит, KCl*NaCl - сильвинит. Бром в виде солей содержится в морской воде, в воде некоторых озер и в подземных рассолах. Соединения иода содержатся в морской воде, накапливаются в некоторых водрослях. Существуют незначительные залежи солей иода - KIO3 и KIO4 - В Чили и Боливии.

3. Растворимость . Галогены обладают некоторой растворимостью в воде, однако, как и следовало ожидать, из-за ковалентного характера связи XX и малого заряда растворимость их невелика. Фтор настолько активен, что оттягивает электронную пару от кислорода воды, при этом выделяется свободный O2 и образуются OF2 и HF. Хлор менее активен, но в реакции с водой получается некоторое количество HOCl и HCl. Гидраты хлора (например, Cl2*8H2O) могут быть выделены из раствора при охлаждении. Иод проявляет необычные свойства при растворении в различных растворителях. При растворении небольших количеств иода в воде, спиртах, кетонах и других кислородсодержащих растворителях образуется раствор коричневого цвета (1%-ный раствор I2 в спирте обычный медицинский антисептик). Молекулы галогенов неполярны, галогены хорошо растворяются в спиртах, бензоле, простых эфирах. Фтор: в воде растворен быть не может, так как интенсивно с ней взаимодействует.

Хлор: растворимость в воде при 20оС - 2,5 л в 1 л воды. Раствор хлора в воде практически бесцветен и называется хлорной водой.

Бром: растворимость в воде при 20оС равна 0,02 г в 100 г воды. Раствор брома в воде - бромная вода - бурого цвета.

Иод: Растворимость в воде при 20оС равна 0,02 г в 100 г воды. Образующийся раствор светло-желтого цвета называется иодной водой. Значительно лучше, чем в воде, иод и бром растворяются в органических растворителях: четыреххлористом углероде, хлороформе, бензоле. Взаимодействие галогенов с водой - сложный процесс, включающий растворение, образование сольватов и диспропорционирование.

Фтор в отличие от других галогенов воду окисляет:

2H2O + 2F2 = 4HF + O2.

Однако при насыщении льда фтором при -400С образуется соединение HFO. Можно отметить два типа взаимодействия молекул воды с молекулами галогенов. К первому относится процесс образования клатратов, например, 8Cl2. 46H2O при замораживании растворов. Молекулы галогена в клатратах занимают свободные полости в каркасе из молекул H2O, связанных между собой водородными связями. Ко второму типу можно отнести гетеролитическое расщепление и окислительно-восстановительное диспропорционированиесостав продуктов взаимодействия в системе Cl2+H2O: растворенный в воде хлор (он преобладает), HCl, HClO, HClO3. При насыщении хлором холодной воды (0-20оС) часть молекул Cl2 диспропорционирует:

Cl2 + H2O = HCl + HClO,

при этом кислотность раствора постепенно увеличивается. Бром и иод взаимодействуют с водой аналогично хлору.

4. Молекулы HХ полярны. Полярность количественно характеризуется величиной дипольного момента. Дипольные моменты убывают в ряду HF-HI. С точки зрения МО ЛКАО полярность определяется различием энергий взаимодействующих 1s-атомной орбитали водорода и ns-, np-орбиталей атома галогена. Как отмечалось, в ряду F-Cl-Br-I эта разница, а также степень локализации электронов на атомах галогена и полярность молекул НХ уменьшаются. В стандартных условиях галогеноводороды - газы. С ростом массы и размеров молекул усиливается межмолекулярное взаимодействие и, как следствие, повышаются температуры плавления (Тпл) и кипения (Ткип). Однако для HF величины Тпл и Ткип, полученные экстраполяцией в ряду однотипных соединений HF-HCl-HBr-HI, оказываются существенно ниже, чем экспериментальные (табл.4). Аномально высокие температуры плавления и кипения объясняются усилением межмолекулярного взаимодействия за счет образования водородных связей между молекулами HF. Твердый HF состоит из зигзагообразных полимерных цепей. В жидком и газообразном HF вплоть до 60оС присутствуют полимеры от (HF)2 до (HF)6. Для HCl, HBr, HI образование водородных связей не характерно из-за меньшей электроотрицательности атома галогена. Растворимость в воде. Благодаря высокой полярности газообразные НХ хорошо растворимы в воде *) , например, в 1 объеме воды при 0оС растворяется 507 объемов HCl или 612 объемов HBr. При охлаждении из водных растворов выделены кристаллические гидраты HF. H2O, HCl. 2H2O и т.д., которые построены из соответствующих галогенидов оксония. В водных растворах НХ устанавливается протолитическое равновесие

HX + HOH = + H3O+ (X = F, Cl, Br, I), (1),

то есть эти растворы являются кислотами.

Водные растворы HCl, HBr и HI ведут себя как сильные кислоты. В разбавленных водных растворах HF является слабой кислотой (рКа = 3.2), что связано с высокой энергией связи H-F по сравнению с энергией связи H-О в молекуле воды. Однако при повышении концентрации HF выше 1 М сила кислоты увеличивается. Особенностью фтороводорода и плавиковой кислоты является способность разъедать стекло.

Восстановительные свойства галогеноводородов. С увеличением размера и уменьшением энергии ионизации атома галогена восстановительная способность в ряду HF-HCl-HBr-HI увеличивается (табл.5). Например, плавиковая HF и соляная HCl кислоты с концентрированной серной кислотой не взаимодействуют, а HBr и HI ею окисляются:

2HBr + H2SO4(конц) = Br2 + SO2 + 2H2O

8HI + H2SO4(конц) = 4I2 + H2S + 4H2O.

Сжигание хлора с водородом является основным промышленным способом получения HCl. Бром и иод реагируют с водородом более спокойно, однако выход невелик, поскольку равновесие Н2 + Х2 = 2НХ (Х = Br, I) смещено влево. Газообразные НХ выделяются при действии нелетучих сильных кислот на твердые ионные галогениды металлов: (на практике пользуются 70-85%-ным р-ром серной к-ты, т.к. реакция идет на поверхности кристаллов соли. Если брать конц. к-ту, осаждается NaHSO4. При использовании разб серной к-ты значительная часть HCl остается в р-ре. Выделяющийся HCL сушат над конц. серной к-той. Оксид фосфора для этого непригоден так как взаимодействует с HCL: P4O10 + 12HCL = 4POCL3 + 6H2O

CaF2 + H2SO4(конц) = CaSO4 + 2HF

NaCl + H2SO4(конц) = NaHSO4 + HCl

Большинство галогенидов неметаллов относятся к соединениям с ковалентной связью и гидролизуются с выделением соответствующего галогеноводорода, например,

SiCl4 + 4H2O = SiO2. 2H2O + 4HCl

Галогеноводороды образуются также при галогенировании органических соединений, например:

RH +Cl2 = RCl + HCl

Соляную кислоту получают растворением газообразного хлороводорода в воде. Хлороводород получают сжиганием водорода в хлоре. В лабораторных условиях используется разработанный ещё алхимиками способ, заключающийся в действии крепкой серной кислоты на поваренную соль:

NaCl + H2SO4(конц.) (150 °C) > NaHSO4 + HCl^

При температуре выше 550 °C и избытке поваренной соли возможно взаимодействие:

NaCl + NaHSO4 (>550 °C) = Na2SO4 + HCl^

Хлороводород прекрасно растворим в воде. Так, при 0 °C 1 объём воды может поглотить 507 объёмов HCl, что соответствует концентрации кислоты 45 %. Однако при комнатной температуре растворимость HCl ниже, поэтому на практике обычно используют 36-процентную соляную кислоту.

Промышленность.

Применяют в гидрометаллургии и гальванопластике (травление, декапирование), для очистки поверхности металлов при паянии и лужении, для получения хлоридов цинка, марганца, железа и др. металлов. В смеси с ПАВ используется для очистки керамических и металлических изделий (тут необходима ингибированная кислота) от загрязнений и дезинфекции. В пищевой промышленности зарегистрирована в качестве регулятора кислотности, пищевой добавки E507. Применяется для изготовления зельтерской (содовой) воды.

Медицина

Составная часть желудочного сока; разведенную соляную кислоту ранее назначали внутрь главным образом при заболеваниях, связанных с недостаточной кислотностью желудочного сока.

5. Гипогалогенитные кислотыHXO

Гипогалогенитные кислоты являются слабыми. Растворы гипогалогенитов имеют сильно щелочную реакцию, а пропускание через них СО2 приводит к образованию кислоты, например,

NaClO + H2O + CO2 = NaHCO3 + HClO.

Высокую окислительную способность гипохлоритов иллюстрируют следующие реакции:

NaСlO +2NaI + H2O = NaCl + I2 + 2NaOH

2NaClO + MnCl2 + 4NaOH = Na2MnO4 + 4NaCl + 2H2O.

Из оксокислот HXO2 известны лишь хлористая кислота HClO2. Она не образуется при диспропорционировании HClO. Водные растворы HClO2 получают обработкой Вa(ClO2)2 серной кислотой с последующим отфильтровыванием осадка BaSO4:

Оксокислоты HXO3 более устойчивы, чем HXO (см. реакции 1, 3-5, 7). Хлорноватая HClO3 кислота получены в растворах с концентрацией ниже 30%. Растворы HClO3 получают действием разбавленной H2SO4 на растворы cоответствующих солей, например,

При концентрации растворов выше 30% кислоты HBrO3 и HClO3 разлагаются со взрывом. Водные растворы HXO3 являются сильными кислотами, соли более устойчивы к нагреванию, чем соответствующие кислоты. В частности, некоторые из иодатов встречаются в природе в виде минералов, например, лаутарит NaIO3. При нагревании твердого КСIO3 до 500оС возможно диспропорционирование 4KClO3 3KClO4 +KCl,

Хлорная кислота (Тпл.= -102оС, Ткип.= 90оС) получена в индивидуальном состоянии нагреванием твердой соли КClO4 с концентрированной H2SO4 с последующей отгонкой при пониженном давлении:

КClO4 ,тв.+ H2SO4,конц HClO4 + KHSO4

HClO4 легко взрывается при контакте с органическими веществами. Хлорная кислота - одна из сильных кислот. Бесцветная концентрированная HClO4 даже при комнатной температуре синтеза темнеет из-за образования оксидов хлора с более низкими степенями окисления. Устойчивость солей выше, чем соответствующих оксокислот HXO4. Кристаллы солей, например, KClO4, построены из ионов K+ и ClО, электростатическое взаимодействие которых увеличивает энергию кристаллической решетки и повышает стабильность.

6. Гипогалогенитные кислоты HXO известны лишь в разбавленных водных растворах. Их получают взаимодействием галогена с суспензией оксида ртути:

2X2 + 2HgO + H2O = HgO. HgХ2+2HOX.

Следует отметить особенность соединения HOF. Оно образуется при пропускании фтора над льдом при -400С и конденсацией образующегося газа при температуре ниже 0оС.

F2,газ + H2Oлед HOF + HF

HOF, в частности, не образует солей, а при его взаимодействии с водой появляется пероксид водорода:

HOF + H2O = H2O2 + HF

Гипогалогенитные кислоты являются слабыми. При переходе от хлора к иоду по мере увеличения радиуса и уменьшения

электроотрицательности атом галогена слабее смещает электронную плотность от атома кислорода и, тем самым, слабее поляризует связь Н-О. В результате кислотные свойства в ряду HClO - HBrO - HIO ослабляютсяИз оксокислот HXO2 известны лишь хлористая кислота HClO2. Она не образуется при диспропорционировании HClO. Водные растворы HClO2 получают обработкой Вa(ClO2)2 серной кислотой с последующим отфильтровыванием осадка BaSO4:

Ba(ClO2)2 + H2SO4 = BaSO4 + 2HClO2.

HClO2 является кислотой средней силы: рКа = 2.0 (табл.7). Хлориты используют для отбеливания. Их получают мягким восстановлением ClO2 в щелочной среде:

2СlO2 + Ba(OH)2 + H2O2 = Ba(ClO2)2 + 2H2O + O2

2СlO2 + PbO + 2NaOH = PbO2 + 2NaClO2 + H2O.

Бромит бария удалось синтезировать по реакции:

Ba(BrO)2 + 2Br2 + 4KOH Ba(BrO2)2 +4KBr + 2Н2О.

Оксокислоты HXO3 более устойчивы, чем HXO (см. реакции 1, 3-5, 7 в 9.3). Хлорноватая HClO3 и бромноватая HBrO3 кислоты получены в растворах с концентрацией ниже 30%, а твердая йодноватая HIO3 выделена как индивидуальное вещество.

Растворы HClO3 и HBrO3 получают действием разбавленной H2SO4 на растворы cоответствующих солей, например,

Ba(ClO3)2 + H2SO4 = 2HClO3 + BaSO4 .

Водные растворы HXO3 являются сильными кислотами. В ряду HClO3-HBrO3-HIO3 наблюдается некоторое уменьшение силы кислот (табл.10). Это можно объяснить тем, что с ростом размера атома галогена прочность кратной связи О уменьшается, что приводит к уменьшению полярности связи H-O и уменьшению легкости отрыва от нее водорода молекулами воды. метаиодная кислота HIO4 и некоторые ее соли известны, иод(VII) из-за роста радиуса в ряду Сl-Br-I и повышения его координационного числа образует, главным образом, гидроксопроизводные состава (HO)5IO H5IO6, в которых атом иода октаэдрически окружен атомом кислорода и пятью гидроксильными группами

Бромная кислота HBrO4 известна лишь в растворах (не выше 6М), получаемых подкислением перброматов NaBrO4, которые, в свою очередь, удалось синтезировать окислением броматов фтором в разбавленных щелочных растворах (броматы можно окислить до перброматов с помощью XeF2 или электролитически) :

NaBrO3 + F2 + 2NaOH = NaBrO4 + 2NaF +H2O .

Хлорная кислота - одна из сильных кислот. По силе к ней приближается бромная кислота.Иодная кислота существует в нескольких формах, главными из которых являются ортоиодная H5IO6 и метаиодная HIO4 кислоты. Ортоиодная кислота образуется в виде бесцветных кристаллов при осторожном упаривании раствора, образующегося при обменной реакции

Ba3(H2IO6)2 + 3H2SO4 = 3BaSO4 + 2H5IO6.

Устойчивость солей выше, чем соответствующих оксокислот HXO4. Кристаллы солей, например, KClO4, построены из ионов K+ и ClО,

электростатическое взаимодействие которых увеличивает энергию кристаллической решетки и повышает стабильность.

8. В водородных оединениях Н2Э элементы имеют степень окисления (-2)Темодинамическая активность уменьшается от Н2О до Н2Те (по эн. Гибса) В обычных условиях - это ядовитые газы с неприятным запахом. Т. плавл. в ряду Н2S H2Se H2Te увелич, т.к. с увеличением числа электронов и размеров молекул усиливается ван-дер-ваальсово взаим. Вода имеет аномально выскоие темп. кипения и плавления для этой группы, т.к. за счёт водородных связей молекул взаим между её молекулами оч сильное. В расворах ведут себя как двухосн кислоты. Сила кислот в ряду от Н2О до Н2Те возрастает. Восстановительная способность тоже возрастает из-за увеличенияэтома происходит ослабление связей H - Э.

ОПРЕДЕЛЕНИЕ

Галогены – элементы VIIА группы – фтор (F), хлор (Cl), бром (Br) и йод (I).

Электронная конфигурация внешнего энергетического уровня галогенов ns 2 np 5 . Поскольку, до завершения энергетического уровня галогенам не хватает всего 1-го электрона, в ОВР они чаще всего проявляют свойства окислителей. Степени окисления галогенов: от «-1» до «+7». Единственный элемент группы галогенов – фтор – проявляет только одну степень окисления «-1» и является самым электроотрицательным элементом.

Молекулы галогенов двухатомны: F 2 , Cl 2 , Br 2 , I 2 . С ростом заряда ядра атома химического элемента, т.е. при переходе от фтора к йоду окислительная способность галогенов снижается, что подтверждается способностью вытеснения нижестоящих галогенов вышестоящими из галогеноводородных кислот и их солей:

Br 2 + 2HI = I 2 + 2HBr

Cl 2 + 2KBr = Br 2 + 2KCl

Физические свойства галогенов

При н.у. фтор – газ светло-желтого цвета, обладающий резким запахом. Ядовит. Хлор – газ светло-зеленого цвета, также как и фтор имеет резкий запах. Сильно ядовит. При повышенном давлении и комнатной температуре легко переходит в жидкое состояние. Бром – тяжелая жидкость красно-бурого цвета с характерным неприятным резким запахом. Жидкий бром, а также его пары сильно ядовиты. Бром плохо растворяется в воде и хорощо в неполярных растворителях. Йод – твердое вещество темно-серого цвета с металлическим блеском. Пары йода имеют фиолетовый цвет. Йод легко возгоняется, т.е. переходит в газообразное состояние из твердого, при этом минуя жидкое состояние.

Получение галогенов

Галогены можно получить при электролизе растворов или расплавов галогенидов:

MgCl 2 = Mg + Cl 2 (расплав)

Наиболее часто галогены получают по реакции окисления галогенводородных кислот:

MnO 2 + 4HCl = MnCl 2 + Cl 2 +2H 2 O

K 2 Cr 2 O 7 + 14HCl = 3Cl 2 + 2KCl +2CrCl 3 +7H 2 O

2KMnO 4 +16HCl = 2MnCl 2 +5Cl 2 +8H 2 O +2KCl

Химические свойства галогенов

Наибольшей химической активностью обладает фтор. Большинство химических элементов даже при комнатной температуре взаимодействует с фтором, выделяя большое количество теплоты. Во фторе горит даже вода:

2H 2 O + 2F 2 =4HF + O 2

Свободный хлор менее реакционноспособен, чем фтор. Он непосредственно не реагирует с кислородом, азотом и благородными газами. Со всеми остальными веществами он взаимодействует подобно фтору:

2Fe + Cl 2 = 2FeCl 3

2P + 5Cl 2 = 2PCl 5

При взаимодействии хлора с водой на холоде происходит обратимая реакция:

Cl 2 + H 2 O↔HCl +HClO

Смесь, представляющую собой продукты реакции, называют хлорной водой.

При взаимодействии хлора с щелочами на холоде образуются смеси хлоридов и гипохлоритов:

Cl 2 + Ca(OH) 2 = Ca(Cl)OCl + H 2 O

При растворении хлора в горячем растворе щелочи происходит реакция:

3Cl 2 + 6KOH=5KCl +KClO 3 +3H 2 O

Бром, как и хлор растворяется в воде и, частично реагируя с ней, образует так называемую «бромную воду», тогда как йод в воде практически нерастворим.

Йод существенно отличается по химической активности от остальных галогенов. Он не реагирует с большинством неметаллов, а с металлами медленно реагирует только при нагревании. Взаимодействие йода с водородом происходит только при сильном нагревании, реакция является эндотермической и сильно обратимой:

Н 2 + I 2 = 2HI - 53 кДж.

Примеры решения задач

ПРИМЕР 1

Задание Рассчитайте объем хлора (н. у.), который прореагировал с иодидом калия, если при этом образовался йод массой 508 г
Решение Запишем уравнение реакции:

Cl 2 + 2KI = I 2 + 2KCl

Найдем количество вещества образовавшегося йода:

v(I 2)=m(I 2)/M(I 2)

v(I 2)=508/254=2 моль

По уравнению реакции количество вещества хлора.

© 2024 Аналитика. Религия. Мироздание. Прошлое. Сионизм