Вконтакте Facebook Twitter Лента RSS

Неомыляемые жиры функции. Биологические функции липидов. Низкомолекулярные биорегуляторы липидной природы

Массовая доля неомыляемых липидов в растительных маслах значительно колеблется в зависимости от сорта и условий выращивания растений, а также от способа извлечения масла из семян и составляет 0,4-3 %. При извлечении масла холодным прессованием без тепловой обработки в масло переходит минимальное количество неомыляемых липидов; при экстракции растворителями их количество в масле значительно увеличивается.

Известны два основных типа неомыляемых липидов - стероиды и терпены. Эти химические соединения относятся к двум разным классам, но все они построены из одних и тех же пятиуглеродных строительных блоков.

Терпены. Их молекулы построены из нескольких молекул изопрена. Монотерпены содержат две изопреновые группировки; сесквитерпены - 3; дитерпены -4; тритерпены - 6, тетратерпены - 8. Молекулы терпенов могут иметь линейное или циклическое строение. В растениях обнаружено очень большое число моно- и сесквитерпенов, которые придают растениям свойственный им аромат и служат главными компонентами эфирных масел. Так, монотерпены гераниол, лимонен, ментол, камфора и карвон - главные компоненты соответственно гераниевого, лимонного, мятного, камфорного и тминного масел. К дитерпенам относятся фитол, являющийся компонентом фотосинтетического пигмента хлорофилла, а также витамин А. К группе тетратерпенов принадлежат каротиноиды.

Хлорофиллы высших растений представляют собой смесь хлорофилла а и Ь в соотношении 3:1. Недозревшие масличные семена содержат значительное количество хлорофиллов. По мере созревания семян они исчезают - от них отщепляется магний, и они превращаются в феофитины. Хлорофиллы обнаружены в конопляном, льняном, хлопковом, соевом маслах. Хлорофилл инициирует окислительные процессы, и масло, содержащее много хлорофилла, неустойчиво при хранении.


Стерины содержатся в биомембранах митохондрий, ЭПС и в составе плазмалеммы. Наиболее распространенные из фитостеринов (т.е. стеринов растений) - стигмастерин, ситостерин, брассикастерин, которые входят в состав неомыляемых липидов хлопчатника, подсолнечника, сои, арахиса, рапса, пшеницы.

Госсипол. В хлопковых семенах содержится группа пигментов, растворимых в жирах и органических растворителях, главным из которых является госсипол (производное нафталина). Он содержится в ядре хлопковых семян в количестве до 6,5% и придает нерафинированному хлопковому маслу бурую окраску. Госсипол и его производные являются клеточным, сосудистым и нервным ядом. Содержание госси- пола в шротах в количестве 0,2% губительно для животных.

Жирорастворимые витамины семян. К ним принадлежат витамины А, Е, К и И. Витамин В - группа ненасыщенных ЖК (олеиновой, линолевой, линоле- новой и арахидоновой). Молекулы витаминов А, Е и К построены из изопреновых единиц.


Витамин Е представлен целой группой витамеров - токоферолов и токот- риенолов. Наиболее распространен а-токоферол:

Токоферолы содержатся главным образом в проросших зернах пшеницы и риса, маслах, а также в зеленых частях растений (салат, шпинат). Массовая доля токоферолов в масле: подсолнечном 0,05 %; соевом 0,06 %; кукурузном и хлопковом 0,08 %; арахисовом 0,2 %. Токоферолы препятствуют свободнорадикальному окислению остатков ненасыщенных ЖК в липидах мембран («ловушка радикалов»). Наиболее сильные антиокислительные свойства у у- и 5- токоферолов. Наиболее биохимически активны а-токоферолы.

Витамины группы К представляют собой производные нафтохинона. В растениях обнаружен витамин К) - филлохинон, который регулирует систему свертывания крови (витамин коагуляции).


При рафинации содержание всех групп неомыляемых липидов снижается, особенно сильно при дезодорации. В нерафиринованном масле они содержатся в количестве 1,16 % от суммы всех липидов; нейтрализованном и вымороженном масле (7-10 и С) - 0,86 %; нейтрализованном и дезодорированном (210 °С, 266 Па) - 0,69 %; в нейтрализованном, вымороженном и дезодорированном - 0,55 %.

Неомыляемые липиды – группа негидролизующихся природных веществ, растворимых в неполярных органических растворителях (бензол, хлороформ) и не растворимых в воде. К ним относятся терпеноиды и стероиды . Терпеноиды имеют в основном растительное происхождение, а стероиды – животное. И терпеноиды, и стероиды построены из фрагментов изопрена, поэтому их общее название – изопреноиды .

ТЕРПЕНОИДЫ

Терпеноиды – обширный класс природных кислородсодержащих соединений, производных терпенов. Терпены – это углеводороды общей формулы (C 5 H 8) n , где n≥ 2. Углеводородный скелет всех терпеноидов построен из остатков изопрена
(2-метилбутадиена-1,3).


Терпеноиды широко растпространены в природе. Они выделены из цветковых растений семейств Amarantaceae, Lamiaceae, Apiaceae, Asteraceae и др., а также некоторых мхов и грибов. Терпеноиды в больших количествах содержатся в эфирных маслах мяты перечной, эвкалипта, герани, розы, лимона, ромашки аптечной, смоле хвойных деревьев.

К терпеноидам относятся растительные пигменты, смолы, фитогормоны, сапонины, жирорастворимые витамины.

В большинстве терпеноидов изопреновые фрагменты соединены по принципу «голова к хвосту» (т.н. «изопреновое правило», впервые сформулированное О. Валлахом и подтвержденное Л. Ружичкой). Например:


(В химии терпеноидов принято пользоваться краткими формулами, без обозначения символов углерода). Наряду с таким построением, но гораздо реже, наблюдается порядок соединения «голова к голове». Известны также природные вещества терпенового типа, структура которых не отвечает изопреновому правилу, но эти исключения немногочисленны.

Терпеновые углеводороды общей формулы (C 5 H 8) n классифицируют по количеству изопреновых звеньев в молекуле на монотерпены (n=2), сесквитерпены (n=3), дитерпены (n=4), тритерпены (n=6), тетратерпены (n=8). Другой вид классификации – по количеству циклов в молекуле. Терпены и терпеноиды могут быть ациклическими (цикл отсутствует), моноциклическими, бициклическими и полициклическими.

Примером ациклических терпеноидов является спирт геранил и продукт его окисления – альдегид гераниаль (цитраль). Они содержатся в эфирных маслах герани, лимона и розы.

Цитраль используется в глазной практике как противовоспалительное средство.

Примером моноциклических терпенов является лимонен – компонент эфирного масла лимона и скипидара. При гидрировании лимонена образуется ментан, производным которого является ментол.


Ментол присутствует в эфирном масле перечной мяты. Ментол обладает антисептическим, болеутоляющим и успокаивающим действием. Он входит в состав валидола, мазей, применяемых при лечении ревматизма и при насморке.

В промышленности ментол получают из м-крезола. Вначале проводят реакцию алкилирования по Фриделю-Крафтсу с получением тимола, который затем гидрируют:


Как непредельное соединение лимонен способен к реакции гидратации. При полной гидратации в кислой среде, которая протекает по правилу Марковникова, образуется двухатомный спирт терпин:


Терпин применяется в медицине в виде гидрата как отхаркивающее средство.

Представителями бициклических терпенов являются пинан и камфан:

Ненасыщенным производным пинана является α-пинен – составная часть скипидара. Как непредельный углеводород α-пинен вступает в реакции присоединения (например, с бромной водой) и окисления:

Производным камфана является кетон камфора, которую применяют в медицине как стимулятор сердечной деятельности.

При бромировании камфоры образуется α-бромкамфора, которая используется как успокаивающее средство:

Особую группу терпенов составляют растительные пигменты каротиноиды. Они широко распространены в природе, играют роль витаминов или предшественников витаминов, участвуют в процессах фотосинтеза. Большинство каротиноидов являются тетратерпенами. В их молекулах присутствуют длинные сопряженные системы, поэтому они окрашены. Каротиноиды окрашивают морковь в оранжево-красный цвет (carrot – морковь), придают различную окраску плодам и ягодам, присутствуют во всех зеленых частях растений. Для каротиноидов характерна транс-конфигурация двойных связей.

β-Каротин – растительный пигмент оранжевого цвета, содержащийся в моркови, томатах:

Многие каротиноиды являются провитамином А, то есть соединениями, которые в организме человека и животных способны превращаться в витамин А.


Витамин А относится к жирорастворимым витаминам.

И каротиноиды, и витамин А неустойчивы и легко разрушаются при нагревании, под действием кислорода воздуха и света.

Витмин А (ретинол) – важнейший витамин, влияющий на рост человека, животных и птиц. Главными признаками авитаминоза А являются заболевание глаз (куриная слепота), исхудание, понижение сопротивляемости организма инфекциям. Перерождение и ороговение эпителия в различных органах вследствие недостатка витамина А приводит к заболеванию дыхательных путей, к желудочно-кишечным и инфекционным заболеваниям, к нарушению деятельности ЦНС, образованию камней в почках и мочевом пузыре и другим патологиям. К жирорастворимым относятся также витамины группы Е и К.

Витамины группы Е – токоферолы – присутствуют в растительных маслах. Витамины группы Е можно рассматривать и как производные гетероциклической системы хромана, и как производные двухатомного фенола гидрохинона. Они выполняют роль антиоксидантов по отношению к ненасыщенным липидам, предохраняя их от пероксидного окисления, участвуют в синтезе белков, тканевом дыхании, в регуляции развития зародыша и функций эпителия половых желез.


Витамины группы К являются антигеморрагическим фактором, они нормализуют процесс свертываемости крови. Витамины группы К – производные 2-метил-1,4-нафтохинона. В природе данная группа витаминов представлена несколькими соединениями. Витамин К 1 встречается в высших растениях, витамин
К 2 – в организмах животных и бактерий.


В медицине применяется синтетический водорастворимый аналог витаминов группы К – викасол, который повышает свертываемость крови:


СТЕРОИДЫ

Стероиды – большая группа природных соединений как животного, так и растительного происхождения, объединенная общностью углеродного скелета и путями биогенеза.

Соединения стероидной структуры широко распространены в природе. Они найдены практически во всех организмах – от одноклеточных до млекопитающих. Стероидами выполняются самые разнообразные функции (регуляция углеводного обмена – глюкокортикоиды, обмена минеральных солей – минералокортикоиды, процессов размножения – половые гормоны и т.д.). Стероиды появились в организмах на самых ранних стадиях их эволюции.

Почему же природа выбрала именно эти соединения в качестве химических регуляторов биологических процессов? Возможно, из-за высокой устойчивости их молекул и из-за высокой информационной емкости, которая обусловлена многообразием производных и стереоизомеров.

В настоящее время известно около 20 тыс. различных стероидов и свыше 100 из них применяются в медицине.

Все стероиды являются производными циклопентанпергидрофенантрена, или стерана, или гонана. Кольца принято обозначать как A, B, C и D.

Стереоизомерия стерана. Все циклогексановые кольца в структуре стерана находятся в конформации кресла. Сочленены они могут быть по-разному. Рассмотрим типы сочленения колец на более простом примере – декалине:


Более энергетически выгодным является транссочленение колец.

В структуре стероидов кольца B и C и C и D всегда транс-сочленены (за исключением сердечных гликозидов и ядов жаб – в них C и D цис-сочленены). Кольца A и B могут иметь как цис-, так и транссочленение:


Классификация стероидов. Выделяют следующие группы стероидов:

Стерины

Желчные кислоты

Гормоны коры надпочечников (кортикостероиды)

Половые гормоны (мужские и женские)

Агликоны сердечных гликозидов.

Для родоначальных структур каждой группы стероидов приняты тривиальные названия, т.к. использование международной номенклатуры привело бы к очень сложным названиям.


Стерины

В основе структуры всех стеринов лежит углеводород холестан.

В молекуле холестана присутствуют две так называемые ангулярные (угловые) метильные группы в положениях 10 и 13 и углеводородный радикал из восьми атомов углерода в положении 17.

Наиболее широко распространенным стерином является холестерин. Он присутствует в нервной ткани и надпочечниках, в крови, желчи. В организме присутствует и в свободном виде, и в виде сложных эфиров с высшими карбоновыми кислотами (по спиртовому гидроксилу), например, холестерина пальмитат.

Только 20% от общего количества холестерина поступает в организм с пищей, основное количество холестерина синтезируется в печени и кишечнике из уксусной кислоты (синтез включает более 20 стадий). Нарушение уровня холестерина (нормальная концентрация в крови ~2г/л) ведет к различным нарушениям. Повышение концентрации холестерина ведет к отложению его на стенках сосудов, к снижению их эластичности и развитию атеросклероза (как следствие – ишемическая болезнь сердца, нарушение мозгового кровообращения). При пересыщении желчи холестерином развивается желчнокаменная болезнь. Значительное падение концентрации холестерина в плазме крови тоже может вести к заболеваниям: гипертиреозу, аддисоновой болезни (поражению коры надпочечников), истощению.

На уровень холестерина влияет состав пищевых жиров. Употребление животных жиров ведет к повышению концентрации холестерина. На 1 г насыщенных жиров должно приходиться 2 г ненасыщенных.

Эргостерин – 24-метил-холестатриен-5,7,22-ол-3 (содержится в дрожжах) является провитамином D 2 , т.к. при его облучении образуется этот витамин.


Витамины группы D регулируют обмен кальция и фосфора. Их недостаток ведет к рахиту.

Желчные кислоты

В основе структуры желчных кислот лежит углеводород холан.

Желчные кислоты вырабатываются печенью при окислении холестерина и выделяются с желчью в кишечник. Особенностью структуры желчных кислот является цис-сочленение колец A и B. Наиболее распространены холевая кислота и ее производные.

Холевая кислота является 3,7,12-тригидроксихолановой кислотой.

В желчи содержится не свободная холевая кислота, а ее производные – амиды с глицином или таурином:


гидрофильная часть


липофильная часть

В кишечнике и желчи гликохолевая и таурохолевая кислоты присутствуют в виде солей. Они являются дифильными соединениями, т.к. имеют в структуре гидрофильную и гидрофобную части. Желчные кислоты обладают поверхностно-активными свойствами, действуют как эмульгаторы.

Сами желчные кислоты плохо растворимы в воде, могут откладываться в виде камней в желчном пузыре.

Кортикостероиды

Кортикостероиды являются производными углеводорода прегнана.

Кортикостероиды синтезируются в коре надпочечников из холестерина. В чрезвычайно малых концентрациях влияют на процессы жизнедеятельности. Удаление коры надпочечников ведет к смерти.

Гормоны коры надпочечников регулируют водно-солевой обмен (минералокортикоиды) и углеводный обмен (глюкокортикоиды).

Кортикостерон – 11,21-дигид-
рок-сипрегнен-4-дион-3,20. Является глюкокортикоидом, антагонистом инсулина (повышает уровень сахара).

Дезоксикортикостерон – 21-гидро-
ксипрегнен-4-дион-3,20 является минералокортикоидом.


Глюкокортикоид гидрокортизон (11,17,21-тригидроксипрегнен-4-дион-3,20) и синтетический аналог глюкокортикоидов преднизолон (11,17,21-тригидроксипрегнадиен-1,4-дион-3,20) используются как противовоспалительные и антиаллергические средства при лечении ревматоидного артрита, бронхиальной астмы и т.д. Используются в медицине в виде ацетатов по первичному спиртовому гидроксилу в положении 21.

Андрогенные гормоны

Мужские половые гормоны являются производными андростана.

Главными андрогенными гормонами являются андростерон и тестостерон. Они влияют на развитие вторичных половых признаков, выработку спермы, оказывают активизирующее действие на синтез ДНК и биосинтез белка, потенцируют сгорание углеводов и жирных кислот с образованием энергии.

В медицинской практике тестостерон применяется в виде пропионата (сложные эфиры обладают более длительным действием в организме):


Реакция ацилирования протекает по спиртовому гидроксилу. В качестве ацилирующего агента можно использовать хлорангидрид или ангидрид пропионовой кислоты.

Женские половые гормоны

Основой структуры эстрогенных гормонов является эстран (обратите внимание на отсутствие ангулярной метильной группы в положении 10).

Эстрогены контролируют менструальный цикл у женщин. Представителями эстрогенных гормонов являются эстрадиол и эстрон:


Эстрадиол применяется в медицинской практике в виде дипропионата.


Для ацилирования можно использовать также пропионовый ангидрид.

К женским половым гормонам относятся также гестагены (гормоны желтого тела яичников, гормоны беременности). Гестагены являются производными прегнана. Наиболее активным гестагеном является прогестерон:


Сердечные гликозиды

Сердечные гликозиды – это соединения, в которых стероидная часть молекулы является агликоном (несахарной частью) гликозидов, образованных моно- или олигосахаридами. В небольших дозах сердечные гликозиды используются в кардиологии. Они увеличивают силу и уменьшают частоту сердечных сокращений, улучшают тканевой обмен сердечной мышцы. В больших дозах сердечные гликозиды являются ядами. В мировой медицинской практике широко используют препараты, получаемые из наперстянки (дигиталиса), строфанта, ландыша, горицвета.

Например, агликоном ланатозида А, выделяемого из наперстянки шерстистой, является дигитоксигенин:

Характерной особенностью агликонов сердечных гликозидов является цис-сочленение колец A и B и C и D, а также наличие ненасыщенного пяти- или шестичленного лактонного кольца в положении 17. Углеводная часть молекулы содержит от одного до пяти моносахаридных остатков. О-гликозидная связь с углеводным остатком осуществляется за счет спиртового гидроксила в положении 3.

Липиды - большой класс органических веществ, обладающий своими особенными свойствами и структурой. Разные группы сложных соединений выполняют особые функции в организме.

Известно, что практически все живые организмы состоят из трех типов химических веществ: углеводов, белков и жиров. Именно последним стоит уделить отдельное внимание, ведь они являются наиболее разнообразным классов. Что такое соединения липидов, какое имеют строение и зачем они нужны?

Липиды – большой класс химических веществ, к которым относятся такие соединения, как жир, воски, некоторые гормоны. Липиды нерастворимы в полярных растворителях (например, в воде), но хорошо растворяются в органических (ацетон, хлороформ).

Какое строение имеет большинство липидов? Существует два основных типа: омыляемые и неомыляемые жиры, имеющие разную конструкцию.

Омыляемые липиды

К омыляемым липидам относятся сложные соединения, структурные части которых объединены эфирной связью. Этот класс жиров легко гидролизуется в растворе под действием щелочей.

Омыляемые липиды – это большой класс веществ, состоящий из отдельных групп:

  • сложные эфиры;
  • гликолипиды;
  • фосфолипиды.

Сложные эфиры

К этой группе относятся:

  • жиры (состоят из глицерина и жирных кислот);
  • воски (производные жирного спирта и кислоты);
  • эфиры стеринов.

Сложные эфиры возникают при взаимодействии органической кислоты, содержащей карбоксильную функциональную группу, и спирта, свойства которого связаны с гидроксильной группой. Реакция между ними приводит к образованию соединения, которое обладает сложноэфирной связью.

Гликолипиды

Среди омыляемых липидов особого внимания заслуживают гликолипиды – сложные вещества, молекула которых представляет собой комбинацию липида и углевода. К ним относят:

  • цереброзиды;
  • ганглиозиды.

В основе гликолипидов обычно лежит молекула особого органического спирта – сфингозина. Они так же содержат фосфатную группу, как у фосфолипидов, но она уже не является «головой», так как связывается с достаточно длинными молекулами полимерных углеводов. Так же, как и у других омыляемых липидов, у гликолипидов в составе наблюдаются органические кислоты.

Фосфолипиды

Группа объединяет следующие вещества:

  • фосфатидовые кислоты;
  • фосфатиды;
  • сфинголипиды.

Фосфолипиды, как видно из названия, имеют отношение к фосфору. Действительно, в их строении присутствует фосфатная функциональная группа (остаток ортофосфорной кислоты). Помимо нее, липиды этой группы содержат также органический спирт и одну либо две органических кислоты.

Вместе эти компоненты создают нечто похожее на головастика: полярная фосфатная группа хорошо взаимодействует с водой, образуя «голову», в то время как неполярные органические кислоты с водой взаимодействуют плохо, и образуют своеобразный «хвост». Эти особенности фосфолипидов как раз и позволяют выполнять им свои важные функции в организме, о которых речь пойдёт немного позже.

Неомыляемые липиды

Неспособные к взаимодействию со щелочами липиды составляют собой отдельную группу веществ – неомыляемых липидов. Эти соединения представляют собой спирты с длинной цепью, циклические спирты, а также каротиноиды.

Единой классификации неомыляемых липидов нет, среди всего их обилия можно очертить несколько ярко выраженных групп.

  1. Длинноцепочечные органические кислоты (последовательность атомов карбона больше 16 атомов, оканчивается карбоксильной группой).
  2. Длинноцепочечные органические спирты (длинная последовательность атомов карбона, которая оканчивается гидроксильной функциональной группой).
  3. Эйкозаноиды (производные жирных кислот, образованные частичной циклизацией и появлением внутримолекулярных связей).
  4. Циклические спирты (полициклические соединения, которым характерно большое количество гидроксильных групп).
  5. Стероиды (производные циклических спиртов, образованные появлением дополнительных функциональных групп).
  6. Каротиноиды (длинные карбоновые цепи, на окончаниях которых часто находятся циклические алканы).

Все перечисленные выше вещества имеют свои особенности, но их объединяют некоторые химические свойства. Среди них: большой молекулярный вес, плохая способность к взаимодействию с водой, растворимость в органических веществах, возможность проникать сквозь биологические мембраны.

Функции

Липиды в живом организме выполняют широкий спектр задач. Так как эти сложные вещества кардинально отличаются между собой по строению, то и функциональность каждой группы жиров лежит в разных областях. Ниже представлена таблица с функциями, которые чаще всего встречаются в природе.

Энергетическая функция

Липиды – один из наиболее важных источников энергии в организме. Молекула жира, который в основном и используется в качестве резерва, содержит намного больше запасённой энергии, нежели близкая по размеру молекула гликогена или крахмала. Окисляясь в митохондриях до углекислого газа и воды, жиры позволяют образовывать большие количества АТФ (универсального носителя энергии в организме).

Структурная функция

Некоторые липиды (фосфолипиды, сфинголипиды) выступают в роли строительного материала для клеточных мембран. Эти сложные соединения укладываются двойным слоем, обращая полярные «головы» наружу от «стены», а неполярные «хвосты» прячутся внутрь. Подобным образом создаётся липидный бислой – основа всех мембранных структур клетки.

Изоляция

Подкожные отложения жировых веществ, а также их отложения вокруг внутренних органов надёжно защищают организм от переохлаждения. Кроме того, такая оболочка вокруг «жителей» брюшной полости не допускает их столкновения.

Защитная и смазочная функция

Это особенно в природе встречается у птиц. Воск, покрывая клюв птицы, предотвращает его пересыхание и растрескивание, а пропитанные жировым веществом перья отталкивают воду. Эти свойства липидов помогают птицам легко держать на воде, не вымачивая в ней оперение, и улучшают обтекание клюва водой при подводной охоте.

Изменение текучести мембран

Биологические мембраны – сложные структуры, состоящие в основном из фосфолипидов. Включаясь между их молекулами, холестерин проявляет свои свойства: увеличивает возможность мембраны к колебаниям, тем самым улучшая мобильность разных ее участков.

Регуляция метаболизма

Метаболические пути организма сложные и потому нуждаются в точной регуляции. Эту функцию выполняют стероидные гормоны, которым не составляет труда проникнуть через мембрану клетки. Внутри стероид реагирует с соответственным рецептором, вызывая определённые изменения в клетке.

Липиды – большой и разнообразный класс органических соединений, без которых жизнь любого организма была бы невозможной, ведь каждая группа веществ имеет свои неповторимые свойства, позволяющие выполнять им различные функции в организме.

Классификация липидов позволяет разобраться с нюансами участия данных микроэлементов во множестве биологических процессов жизнедеятельности человека. Биохимия и строение каждого подобного вещества, входящего в состав клеток, по-прежнему вызывают немало споров среди ученых и экспериментаторов.

Общее описание липидов

Липиды, как известно, — природные соединения, включающие в свой состав различные жиры. Отличием данных веществ от других представителей указанной органической группы является то, что они практически не утилизируются в воде. Будучи активными эфирами кислот с высоким уровнем жирности, они не способны полностью самоустраниться с помощью растворителей неорганического типа.

Липиды имеются в организме каждого человека. Их доля достигает в среднем 10-15% от всего тела. Значение липидов невозможно недооценить: они служат прямым поставщиком жирных ненасыщенных кислот. Извне внутрь организма вещества поступают с витамином F, который крайне важен для полноценной работы пищеварительной системы.

Кроме того, липид – это скрытый ресурс жидкости в человеческом теле. Окисляясь, 100 г жиров способны образовать 106 г воды. Одним из главных предназначений данных элементов является выполнение функции естественного растворителя. Именно благодаря ей в кишечнике происходит беспрерывная абсорбция ценных жирных кислот и витаминов, растворяющихся в органических растворителях. Почти половина всей массы головного мозга принадлежит липидам. В составе остальных тканей и органов их число также велико. В прослойках подкожно-жировой клетчатки может находиться до 90% всех липидов.

Основные виды липидных соединений

Биохимия жировых органических веществ и их строение предопределяют классовые различия. Таблица позволяет наглядно продемонстрировать, какими бывают липиды.

Каждое жиросодержащее вещество относится к одной из двух категорий липидов:

  • омыляемых;
  • неомыляемых.

Если соли кислот с высокой жирностью были образованы посредством гидролиза с использованием щелочи, может возникать омыление. При этом мылами называют калиевые и натриевые соли. Омыляемые вещества представляют собой наибольшую группу липидов.

В свою очередь, группу омыляемых элементов можно условно разделить на две группы:

  • простые (состоящие только из атомов кислорода, углекислого газа и водорода);
  • сложные (представляют собой простые соединения в сочетании с фосфорными основаниями, остатками глицерина или двухтомного ненасыщенного сфингозина).

Простые липиды

К типу простых липидов биохимия относит различные жирные кислоты и спиртовые эфиры. Среди последних веществ самыми распространенными являются холестерин (так называемый циклический спирт), глицерин и олеиновый спирт.

Одним из сложных эфиров глицерина можно назвать триациглицерин, который состоит из нескольких молекул кислот высокой жирности. По сути, простые соединения представляют собой часть аподоцитов жировых тканей. Стоит отметить также, что сложные эфирные контакты с жирными кислотами могут возникать сразу в трех точках, поскольку глицерин является трехатомным спиртом. В этом случае и возникают соединения, образованные из вышеупомянутой связи:

  • триацилглицериды;
  • диацилглицериды;
  • моноацилглицериды.

Преимущественная часть данных жиров нейтрального типа присутствует в организме у животных теплокровных. В их структуре находится большая часть остатков пальмитиновой, стеариновой кислот высокой жирности. Кроме того, нейтральные жиры в одних тканях по своему содержимому могут существенно отличаться от жиров других органов в пределах одного и того же организма. К примеру, подкожная клетчатка человека обогащена такими кислотами на порядок выше, чем печень, состоящая из ненасыщенных жиров.

Нейтральные жиры

Оба вида кислот, вне зависимости от насыщенности, относятся к виду алифатических карбоновых. Биохимия позволяет понять, насколько важны эти вещества для липидов, сравнивая микроэлементы со строительными блоками. Благодаря им выстраивается каждый липид.
Если говорить о первом типе, о насыщенных кислотах, то в организме человека чаще всего можно встретить пальмитиновую и стеариновую кислоты. Намного реже в биохимических процессах участвует лигноцериновая, строение которой является более сложным (24 углеродных атома). При этом, в липидах у животных насыщенные кислоты, имеющие в своем составе менее 10 атомов, практически отсутствуют.

Самым распространенным атомным набором ненасыщенных кислот являются соединения, состоящие из 18 атомов углерода. Незаменимыми считают следующие виды ненасыщенных кислот, обладающих от 1 до 4 двойных связей:

  • олеиновая;
  • линолевая;
  • линоленовая;
  • арахидоновая.
Простагландиды и воски

В большей или меньшей степени все они обладают в организме млекопитающих. Огромное значение имеют производные кислот ненасыщенного типа, которыми являются простагландиды. Синтезируемые всеми клетками и тканями, кроме эритроцитов, они оказывают колоссальное действие на функционирование главных структур и процессов человеческого организма:

  • систему кровообращения и сердце;
  • метаболизм и обмен электролитами;
  • центральную и периферическую нервные системы;
  • органы пищеварения;
  • репродуктивную функцию.

В отдельной группе находятся эфиры сложных кислот и спиртов с одним или двумя атомами в цепочке — воски. Общее число углеродных частиц у них может достигать 22. Благодаря твердой текстуре данные вещества воспринимаются липидами в качестве протекторов. Среди природных восков, синтезирующихся организмами, чаще всего встречаются пчелиный, ланолин и элемент, покрывающий поверхность листьев.

Сложные липиды

Классы липидов представлены группами сложных соединений. Биохимия к ним относит:

  • фосфолипиды;
  • гликолипиды;
  • сульфолипиды.

Фосфолипиды являются биологическими конструкциями, имеющими сложное строение. В их состав обязательно входит фосфор, азотистые соединения, спирты и многое другое. Для организма они играют весомую роль, являясь основополагающей составляющей строительного процесса биологических мембран. Фосфолипиды присутствуют в сердце, печени и головном мозге.

К подклассу сложных липидов относятся также гликолипиды – это соединения, в составе которого имеется сфингозиновый спирт, а значит, и углеводы. В большей степени, чем какие-либо другие ткани в организме, нервные оболочки богаты гликолипидами.

Разновидностью гликолипидов, содержащих остатки серной кислоты, считаются сульфолипиды. Между тем,
классификация липидов всегда подразумевает выделение данных веществ в отдельную группу. Основное различие между двумя сложными соединениями заключается в особенностях их структуры. На месте галактозы третьего атома углерода у гликолипида располагается остаток серной кислоты.

Группа неомыляемых липидов

В отличие от внушительной по числу разновидностей группы омыляемых липидов, неомыляемые полностью высвобождают жирные кислоты и не проходят гидролизацию путем щелочного воздействия. Такие вещества бывают двух типов:

  • высшие спирты;
  • высшие углеводороды.

К первой категории относятся витамины, отличающиеся жирорастворимыми качествами – А, Е, D. Самым известным представителем второго типа стеринов – высших спиртов – является холестерин. Выделить элемент из желчных камней путем выделения одноатомного спирта ученым удалось еще несколько веков назад.

Холестерин невозможно обнаружить у растений, в то время, как в организме млекопитающих он присутствует абсолютно во всех клетках. Его наличие является важным условием полноценного функционирования пищеварительной, гормональной и мочеполовой систем.

Рассматривая высшие углеводороды, которые также являются неомыляемыми веществами, важно обратиться к определению, которое дает биохимия. Указанные элементы с научной точки зрения представляют собой компоненты, продуцируемые изопреном. Молекулярное строение углеводородов основано на объединении частиц изопрена.

Как правило, указанные элементы присутствуют в растительных клетках особо душистых видов. Кроме того, известный всем натуральный каучук – политерпен – относят к группе неомыляемых высших углеводородов.

Среди гликолипидов особенно широко распространены галактозилацилглицеролы.

Эти соединения содержатся в самых различных растительных тканях. Они обнаружены в митохондриях, хлоропластах и локализованы в мембранах; содержатся в водорослях, некоторых фотосинтезирующих бактериях.

Главной формой гликолипидов в животных тканях, особенно в нервной ткани, в частности в мозге, являются гликосфинголипиды. Последний содержит церамид, состоящий из спирта сфингозина и остатка жирной кислоты, и один или несколько остатков сахаров. Важнейшими гликосфинголипидами являются цероброзиды и ганглиозиды.

Простейшими цероброзидами являются галактозилцерамиды и глюкозилцерамиды. В состав галактозилцерамидов входит Д-галактоза, которая связана эфирной связью с гидроксильной группой аминоспирта сфингозина. Кроме того, в составе галактозилцерамида имеется жирная кислота. Чаще всего лигноцериновая, нервоновая или цереброновая кислота, т.е. жирные кислоты, имеющие 24 углеродных атома.

Сфингозин

C HC (СН2 )21

H2 С

СН2 ОН

Жирная кислота (например,

цереброновая кислота)

H OH

H OH

β -D-галактоза

Рисунок 5 – Структура галактозилцерамида

Существуют сульфогалактозилцерамиды, которые отличаются от галактозилцерамидов наличием остатка серной кислоты, присоединенного к третьему углеродному атому гексозы.

Глюкозилцерамиды в отличие от галактозилцерамидов вместо остатка галактозы имеется остаток глюкозы.

Более сложными гликосфинголипидами являются ганглиозиды. Одним из простейших ганглиозидов является гематозид, выделенный из стромы эритроцитов. Он содержит церамид, по одной молекуле галактозы, глюкозы и N-ацетил- нейраминовой кислоты. Ганглиозиды в большом количестве находятся в нервной ткани. Они выполняют рецепторные и другие функции.

1.6 Неомыляемые липиды

Липиды, которые не гидролизуются с освобождением жирных кислот и при щелочном гидролизе не способны образовывать мыла, называются неомыляемы-

ми. В основе классификации неомыляемых липидов лежит их разделение на две группы – стероиды и терпены.

1.6.1 Стероиды

Стероиды – широко распространенные в природе соединения. Это производные тетрациклических тритерпенов. Основу их структуры составляет циклопентанпергидрофенантреновое ядро:

10 B

Циклопентанпергидрофенантрен

К стероидам относят стерины (стеролы) – высокомолекулярные циклические спирты и стериды – сложные эфиры стеринов и высших жирных кислот. Стериды не растворяются в воде, но хорошо растворимы во всех жировых растворителях и входят в состав сырого жира. Стериды образуют омыляемую фракцию липидов. Стерины же при омылении жира остаются в неомыляемой фракции, составляя наибольшую ее часть.

В организме человека и животных главным представителем стеринов (стеролов) является холестерин:

СН3 СН 2

СН2

СН3

СН2

СН3

СН3

СН 3 13 17

ОН 3 5 6

Холестерин (холестерол)

Холестерин играет важную роль в жизнедеятельности животного организ-

участвует в построении биологических мембран. Находясь в составе мембран клеток, вместе с фосфолипидами и белками обеспечивает избирательную проницаемость клеточной мембраны, оказывает регулирующее влияние на состояние мембраны и на активность связанных с ней ферментов;

является предшественником образования в организме желчных кислот, а также стероидных гормонов. К этим гормонам относятся тестостерон (мужской половой гормон), эстрадиол (один из женских гормонов), альдестерон (образующийся в коре надпочечников и регулирующий водно – солевой баланс);

является провитамином витаминов группы Д. Холестерин под действием УФ-

лучей в коже превращается в витамин Д3 (холекальциферол), который в свою очередь служит предшественником гормона, участвующего в регуляции обмена кальция и минерализации костной ткани. Так же нужно отметить, что при нарушении

обмена веществ холестерин откладывается на стенках кровеносных сосудов, приводя к тяжелой болезни – атеросклерозу.

В растениях и дрожжах содержится эргостерин (эргостерол):

СН3 СН

СН2

СН3

СН3

СН3

СН 3 13 17

10 8 ОН 3 5 6 7

Эргостерин (эргостерол)

При облучении эргостерола УФ из него образуется витамин Д2 (эргокальциферол). Для промышленного изготовления витаминов группы Д (антирахитические витамины) используют дрожжи, они содержат свыше 2% стеридов и стеролов на сухое вещество.

В растительных маслах (соевое. кукурузное, масла пшеничных зародышей) содержится обычно от двух до четырех различных стеролов, отличающихся друг от друга количеством, расположением двойных связей и строением боковой цепи, причем обязательной составной частью является β-ситостерол:

СН3

СН3

СН2

СН2

СН3

СН3

С2 Н5

СН3

10 ОН 3 5 6

β -ситостерол

В кукурузе доля β-ситостерола составляет 86% от всех стеролов, а в пшенице – 66%.

1.6.2 Терпены

В основе строения терпенов находится молекула изопрена:

H2 CC CHCH2

Это мономер, из которого построены олигомерные или полимерные цепочки неомыляемых липидов. Терпены, молекулы которых представляют собой соединения из 2, 3, 4, 6, 8 молекул изопрена, называют соответственно моно-, се- скви-, ди-, три- и тетратерпенами. Молекулы терпенов могут иметь линейную или циклическую структуру, содержать гидроксильные, карбонильные и карбоксильные группы.

Монотерпены. это летучие жидкие вещества с приятным запахом. Они являются основными компонентами душистых эфирных масел, получаемых из растительных тканей – цветов, листьев, плодов.

В качестве типичного представителя алифатических монотерпенов является мирцен. От 30 до 50% мирцена содержится в эфирном масле хмеля. Представителями кислородных производных алифатических терпенов являются линалоол, гераниол и цитронеллол. Все они представляют спирты. Линалоол содержится в цветках ландыша, в апельсиновом и кориандровом масле. По-видимому, аромат персиков обусловлен различными сложными эфирами линалоола – уксуснокислым, муравьинокислым и др. Гераниол встречается в масле эвкалипта. Цитронеллол обладает запахом розы и содержится в розовом, гераниевом и других маслах.

Среди моноциклических терпенов наиболее распространенным и важным являются лимонен, ментол, карвон. Лимонен содержится в скипидаре, тминном масле; ментол составляет главную (до 70%) эфирного масла перечной мяты, а карвон содержится в эфирных маслах тмина и укропа.

Сесквитерпены. Эта группа терпенов также входит в состав эфирных масел. Одно из наиболее интересных соединений – ароматический сесквитерпен димер госсипол – специфический пигмент хлопковых семян.

Дитерпены. Наиболее широко представлены соединениями, входящими в состав многих биологически важных соединений. Так, дитерпеновый спирт фитол входит в состав хлорофилла.

Хлорофилл – это пигмент, придающий растениям зеленый цвет. Он содержится в листьях и стеблях, в колосьях и зернах. Хлорофилл находится в особых образованиях протоплазме, называемых хлоропластами. В растениях существуют два вида хлорофилла: хлорофилл а (сине-зеленый) и хлорофилл в (желто-зеле- ный)

OCH3

OCH3

С32 Н30 ОN4 Mg

С 32Н 28О 2N 4 Mg

OС 20Н 39

Хлорофилл в

OС 20Н 39

Хлорофилл а

спирт фитол

спирт фитол

Большой интерес представляет сходство строения хлорофилла с красящим веществом крови гемином. В состав хлорофилла и гемина входят четыре остатка пиррола, соединенных в виде порфиринового ряда, которое в гемине связано с железом, а в хлорофилле – с магнием. Хлорофилл принимает активное участие в процессе фотосинтеза. В результате этого процесса диоксид углерода под влиянием солнечного света поглощенного хлорофиллом, восстанавливается до гексозы и выделяется свободный кислород. Фотосинтез – это единственный процесс, в ходе которого лучистая энергия солнца в виде химических связей запасается в органических соединениях.

Дитерпеновые цепи входят в состав витаминов Е и К1 ; витамин А – это моноциклический дитерпен. Трициклическим дитерпеном служит абиетиновая кислота – главный компонент смоляных кислот, известный в технике как канифоль.

Натриевые соли канифоли – это один из компонентов хозяйственного мыла. Многие дитерпены являются компонентами эфирных масел – камфорен, каурен, стевиол и агатовая кислота.

Тритерпены . Представлены наиболее известным тритерпеном скваленом. Сквален – исходное соединение, из которого у животных и дрожжей, синтезируются стероиды, например, холестерол. Тритерпеновая цепь входит в состав витамина К2 . К более сложным тритерпенам относятся лимонин и кукурбитацин А – соединения, обуславливающие горький вкус лимона и тыквы.

Тетратерпены. Это пигменты – каротиноиды. Они придают растениям желтую или оранжевую окраску разных оттенков. Наиболее известные представители каротиноидов – каротин, лютеин, цеаксантин и криптоксантин.

Каротины впервые выделены из моркови (от лат. «карота» – морковь). Известно три типа каротинов: α-, β- и γ-каротины, отличающиеся как по химическому строению, так и по биологическим функциям. Наибольшей биологической активностью обладает β-каротин, так как он содержит два β-иононовых кольца и при его гидролитическом распаде под действием фермента каротиназы образуется две молекулы витамина А1 :

C 1"

β − каротин

каротиназа

(каротин - диоксигеназа)

витамин А1

(ретинол)

При гидролитическом расщеплении α- и γ-каротина образуется по одной молекуле витамина А, так как они содержат по одному β-иононовому кольцу. Степень усваяемости каротиноидов и свободного витамина А зависит от содержания жиров в пище. β-Каротин придает моркови, тыкве, апельсинам, персикам и другим овощам и фруктам характерный для них цвет. Каротины наряду с хлорофиллом содержатся во всех зеленых частях растений.

Лютеин – желтый пигмент, содержащийся наряду с каротинами в зеленых частях растений. Окраска семян желтой кукурузы зависит от присутствующих в них каротинов и каротиноидов, получивших название цеаксантина и криптоксантина. Окраска плодов томата обусловлена каротиноидом ликопином.

Лютеин, цеаксантин и криптоксантин также обнаруживают активность витамина А.

Каротиноиды играют большую роль в обмене веществ у растений, участвуя в процессе фотосинтеза. Также каротиноиды имеют большое значение в пищевой промышленности. Пигментация каротиноидами зерна хлебных злаков влияет на

© 2024 Аналитика. Религия. Мироздание. Прошлое. Сионизм