Вконтакте Facebook Twitter Лента RSS

Что приводит к необратимым изменениям в природе. Статистическое истолкование необратимости процессов в природе. Возрастание энтропии в замкнутых системах

>>Физика: Необратимость процессов в природе

Закон сохранения энергии утверждает, что количество энергии при любых ее превращениях остается неизменным. Между тем многие процессы, вполне допустимые с точки зрения закона сохранения энергии , никогда не протекают в действительности.
Примеры необратимых процессов . Нагретые тела постепенно остывают, передавая свою энергию более холодным окружающим телам. Обратный процесс передачи теплоты от холодного тела к горячему не противоречит закону сохранения энергии, если количество теплоты, отданное холодным телом, равно количеству теплоты, полученному горячим, но такой процесс самопроизвольно никогда не происходит.
Другой пример. Колебания маятника , выведенного из положения равновесия, затухают (рис.13.9; 1, 2, 3, 4 - последовательные положения маятника при максимальных отклонениях от положения равновесия). За счет работы сил трения механическая энергия маятника убывает, а температура маятника и окружающего воздуха (а значит, и их внутренняя энергия) слегка повышается. Энергетически допустим и обратный процесс, когда амплитуда колебаний маятника увеличивается за счет охлаждения самого маятника и окружающей среды. Но такой процесс никогда не наблюдается. Механическая энергия самопроизвольно переходит во внутреннюю, но не наоборот. При этом энергия упорядоченного движения тела как целого превращается в энергию неупорядоченного теплового движения слагающих его молекул.
Общее заключение о необратимости процессов в природе . Переход тепла от горячего тела к холодному и механической энергии во внутреннюю - это примеры наиболее типичных необратимых процессов. Число подобных примеров можно увеличивать практически неограниченно. Все они говорят о том, что процессы в природе имеют определенную направленность, никак не отраженную в первом законе термодинамики . Все макроскопические процессы в природе протекают только в одном определенном направлении . В обратном направлении они самопроизвольно протекать не могут. Все процессы в природе необратимы, и самые трагические из них - старение и смерть организмов.
Точная формулировка понятия необратимого процесса. Для правильного понимания существа необратимости процессов необходимо сделать следующее уточнение: необратимыми называются такие процессы, которые могут самопроизвольно протекать лишь в одном определенном направлении; в обратном направлении они могут протекать только при внешнем воздействии. Так, можно вновь увеличить размах колебаний маятника, подтолкнув его рукой. Но это увеличение возникает не само собой, а становится возможным в результате более сложного процесса, включающего движение руки.
Математически необратимость механических процессов выражается в том, что уравнения движения макроскопических тел изменяются с изменением знака времени. Они, как говорят в таких случаях, не инвариантны при преобразовании t→-t . Ускорение не меняет знака при замене t→-t . Силы, зависящие от расстояний, также не изменяют знака. Знак при замене t на -t меняется у скорости. Именно поэтому при совершении работы силами трения, зависящими от скорости, кинетическая энергия тела необратимо переходит во внутреннюю.
Кино «наоборот». Яркой иллюстрацией необратимости явлений в природе служит просмотр кинофильма в обратном направлении. Например, прыжок в воду будет при этом выглядеть следующим образом. Спокойная вода в бассейне начинает бурлить, появляются ноги, стремительно движущиеся вверх, а затем и весь ныряльщик. Поверхность воды быстро успокаивается. Постепенно скорость ныряльщика уменьшается, и вот уже он спокойно стоит на вышке. То, что мы видим на экране, могло бы происходить в действительности, если бы процессы можно было обратить.
Нелепость происходящего на экране проистекает из того, что мы привыкли к определенной направленности процессов и не сомневаемся в невозможности их обратного течения. А ведь такой процесс, как вознесение ныряльщика на вышку из воды, не противоречит ни закону сохранения энергии, ни законам механики, ни вообще каким-либо законам, кроме второго закона термодинамики .
Второй закон термодинамики. Второй закон термодинамики указывает направление возможных энергетических превращений, т. е. направление процессов, и тем самым выражает необратимость процессов в природе. Этот закон был установлен путем непосредственного обобщения опытных фактов.
Есть несколько формулировок второго закона, которые, несмотря на внешнее различие, выражают, в сущности, одно и то же и поэтому равноценны.
Немецкий ученый Р. Клаузиус (1822-1888) сформулировал этот закон так: невозможно перевести тепло от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или в окружающих телах.
Здесь констатируется опытный факт определенной направленности теплопередачи: тепло само собой переходит всегда от горячих тел к холодным. Правда, в холодильных установках осуществляется теплопередача от холодного тела к более теплому, но эта передача связана с другими изменениями в окружающих телах: охлаждение достигается за счет работы.
Важность этого закона в том, что из него можно вывести заключение о необратимости не только процесса теплопередачи, но и других процессов в природе . Если бы тепло в каких-либо случаях могло самопроизвольно передаваться от холодных тел к горячим, то это позволило бы сделать обратимыми и другие процессы.
Все процессы самопроизвольно протекают в одном определенном направлении. Они необратимы. Тепло всегда переходит от горячего тела к холодному, а механическая энергия макроскопических тел - во внутреннюю.
Направление процессов в природе указывается вторым законом термодинамики.

???
1. Какие процессы называются необратимыми? Назовите наиболее типичные необратимые процессы.
2. Как формулируется второй закон термодинамики?
3. Если бы реки потекли вспять, означало бы это, что нарушается закон сохранения энергии?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,


Закон сохранения энергии утверждает, что количество энергии при любых ее превращениях остается неизменным. Но он ничего не говорит о том, какие энергетические превращения возможны. Между тем многие процессы, вполне допустимые с точки зрения закона сохранения энергии, никогда не протекают в действительности.
Нагретые тела сами собой остывают, передавая свою энергию более холодным окружающим телам. Обратный процесс переда- чи теплоты от холодного тела к горя-чему не противоречит закону сохранения энергии, но на самом деле не происходит.
Другой пример. Колебания маят-ника, выведенного из положения рав-новесия, затухают (рис. 5.11; 1, 2, 3, 4 - последовательные положения маятника при максимальных отклонениях от положения равновесия). За счет работы сил трения механическая энергия убывает, а температура маятника и окружающего воздуха слегка повышает-ся. Энергетически допустим и обратный процесс, когда амплитуда колебаний маятника увеличивается за счет охлаждения самого маятника и окружающей среды. Но такой процесс никогда не наблюдался. Механическая энергия самопроизвольно переходит во внутреннюю, но не наоборот. При этом упорядоченное движение тела как целого превращается в неупорядоченное тепловое движение слагающих его молекул.
Число подобных примеров можно увеличить практически неограниченно. Все они говорят о том, что процессы в природе имеют определенную направленность, никак не отраженную в первом законе термодинамики. Все процессы в природе протекают только в одном определенном направлении. В обратном направлении самопроизволь-но они протекать не могут. Все процессы в природе необратимы, и самые трагические из них - старение и смерть организмов.
"Уточним понятие необратимого процесса. Необратимым процессом может быть назван такой процесс, обратный которому может протекать только как одно из звеньев более сложного процесса. Так, в примере с маятником можно вновь увеличить амплитуду колебаний маятника, подтолкнув его рукой. Но это увеличение амплитуды возникает не само собой, а становится возможным в результате более сложного процесса, включающего толчок рукой. Можно в принципе перевести теплоту от холодного тела к горячему, но для этого нужна холодильная установка, потребляющая энергию, и т. д.
11*
163
Математически необратимость механических процессов выражается в том, что уравнения движения макроскопических тел изменяются с изменением знака времени. Они, как говорят, не инвариантны при преобразовании t -" -t. Ускорение не меняет знака при t ->¦ -t. Силы, зависящие от расстоя- ний, также не меняют знака. Знак при замене t на -1 меняется у скорости. Именно поэтому при совершении работы силами трения, зависящими от скорости, кинетическая энергия тела необратимо переходит во внутреннюю.
Хорошей иллюстрацией необратимости явлений в природе служит просмотр кинофильма в обратном направлении. Например, падение хрустальной вазы со стола будет выглядеть следующим образом. Лежащие на полу осколки вазы устрем-ляются друг к другу и, соединяясь, образуют целую вазу. Затем ваза возносится вверх и вот уже спокойно стоит на столе. То, что мы видим на экране, могло бы происходить в действи-тельности, если бы процессы можно было обратить. Нелепость происходящего проистекает из того, что мы привыкли к определенной направленности процессов и не допускаем возможности их обратного течения. А ведь такой процесс, как восстановление вазы из осколков, не противоречит ни закону сохранения энергии, ни законам механики, ни вообще каким-либо законам, кроме второго закона термодинамики, который мы сформулируем в следующем параграфе.
Процессы в природе необратимы. Наиболее типичными необратимыми процессами являются:
переход теплоты от горячего тела к холодному,
переход механической энергии во внутреннюю.

При соприкосновении тел процесс теплопередачи происходит самопроизвольно от горячего тела к холодному до тех пор, пока оба тела не будут иметь одинаковые температуры. Например, чашка с горячим чаем. Все макроскопические процессы в природе протекают только в одном определенном направлении. В обратном направлении они самопроизвольно протекать не могут. Необратимый процесс это любой процесс, сопровождающийся трением, т.к. при трении часть механической энергии превращается в теплоту. Любой реальный процесс – необратим. (Старение; прыжки с трамплина и т.д.).

Обратимый процесс это процесс, при котором система, переходя из состояния 2 в состояние 1, проходит те же промежуточные точки, что и при переходе из состояния 1 в состояние 2. Этот процесс допускает возможность возвращения системы в первоначальное состояние без каких-либо изменений в окружающей среде. (Шарик в вакууме падает на абсолютно упругую плиту; колебания маятника в вакууме)

Понятие о втором начале термодинамике.

Второй закон термодинамики (формулировка Клаузиуса) : теплообмен протекает в направлении от более горячих тел к более холодным.

Математическая запись второго закона термодинамики.

Тепловые двигатели.

Тепловыми двигателями называют двигатели, которые превращают внутреннюю энергию топлива в механическую работу. Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя. Разность давлений достигается за счет повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Принцип действия тепловой машины. Любая тепловая машина должна иметь нагреватель, рабочее тело и охладитель (холодильник). Нагреватель сообщает рабочему телу (газу) некоторое количество теплоты Q 1 , что приводит к увеличению его внутренней энергии. Рабочее тело совершает работу за счет запаса внутренней энергии. Рабочим телом у всех тепловых машин является газ, который образуется при сгорании топлива в цилиндре двигателя и при расширении совершает работу. В двигателе газ при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть теплоты Q 2 передается холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей. Эта часть внутренней энергии теряется.

Рабочее тело двигателя получает при сгорании топлива количество теплоты Q 1 , совершает работу и передает холодильнику количество теплоты Q 2

Коэффициентом полезного действия (КПД) теплового двигателя называют отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

КПД любой машины <1

Цикл Карно. Законы термодинамики позволяют вычислить максимально возможный КПД теплового двигателя, работающего с нагревателем, имеющим температуру Т 1 , и холодильником с температурой Т 2 . Впервые это сделал французский физикСади Карно в 1824г. Он придумал (теоретически) идеальную тепловую машину с идеальным газом в качестве рабочего тела. Карно получил для КПД этой машины формулу: , где Т 1 – температура нагревателя; Т 2 – температура холодильника;

Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т 1 , и холодильником с температурой Т 2 , не может иметь КПД, превышающий КПД идеальной тепловой машины. Эта формула дает теоретический предел для максимального значения КПД тепловых двигателей. Действительное же значение КПД из – за различных энергетических потерь приблизительно равно 40%. Максимальный КПД – около 44% имеют двигатели Дизеля.

Обратимые и необратимые процессы , пути изменения состояния термодинамической системы.

Процесс называют обратимым , если он допускает возвращение рассматриваемой системы из конечного состояния в исходное через ту же последовательность промежуточных состояний, что и в прямом процессе, но проходимую в обратном порядке. При этом в исходное состояние возвращается не только система, но и среда. Обратимый процесс возможен, если и в системе, и в окружающей среде он протекает равновесно. При этом предполагается, что равновесие существует между отдельными частями рассматриваемой системы и на границе с окружающей средой. Обратимый процесс - идеализированный случай, достижимый лишь при бесконечно медленном изменении термодинамических параметров. Скорость установления равновесия должна быть больше, чем скорость рассматриваемого процесса.

Если невозможно найти способ вернуть и систему, и тела в окружающей среде в исходное состояние, процесс изменения состояния системы называют необратимым .

Необратимые процессы могут протекать самопроизвольно только в одном направлении; таковы диффузия,теплопроводность, вязкое течение и другое. Для химической реакции применяют понятия термодинамической и кинетической обратимости, которые совпадают только в непосредственной близости к состоянию равновесия На практике нередко встречаются системы, находящиеся в частичном равновесии, т.е. в равновесии по отношению к определенного рода процессам, тогда как в целом система неравновесна. Например, образец закаленной стали обладает пространственной неоднородностью и является системой, неравновесной по отношению к диффузионным процессам, однако в этом образце могут происходить равновесные циклы механической деформации, поскольку времена релаксации диффузии и деформации в твердых телах отличаются на десятки порядков. Следовательно, процессы с относительно большим временем релаксации являются кинетически заторможенными и могут не приниматься во внимание при термодинамич. анализе более быстрых процессов.

Общее заключение о необратимости процессов в природе . Переход тепла от горячего тела к холодному и механической энергии во внутреннюю - это примеры наиболее типичных необратимых процессов. Число подобных примеров можно увеличивать практически неограниченно. Все они говорят о том, что процессы в природе имеют определенную направленность, никак не отраженную в первом законетермодинамики. Все макроскопические процессы в природе протекают только в одном определенном направлении . В обратном направлении они самопроизвольно протекать не могут. Все процессы в природе необратимы, и самые трагические из них - старение и смерть организмов.
Важность этого закона в том, что из него можно вывести заключение о необратимости не только процесса теплопередачи, но и других процессов в природе. Если бы тепло в каких-либо случаях могло самопроизвольно передаваться от холодных тел к горячим, то это позволило бы сделать обратимыми и другие процессы. Все процессы самопроизвольно протекают в одном определенном направлении. Они необратимы. Тепло всегда переходит от горячего тела к холодному, а механическая энергия макроскопических тел - во внутреннюю.
Направление процессов в природе указывается вторым законом термодинамики.


Министерство путей сообщения Российской Федерации

Дальневосточный государственный университет путей сообщения
Кафедра «Химии и Экологии»
Отчет

По расчетно-графической работе на тему:

Необратимость процессов в природе и стрела времени
Выполнил: студент 318 группы

Трофимец А.А.

Проверил преподаватель:

Дрюцкая С.М.
Хабаровск 2010

1. Введение 3

2. Общая характеристика и формулировка

Второго закона термодинамики 4

3. Понятие энтропии 8

4. Стрела времени 10

5. Заключение 11

6. Список литературы 12

Введение
Закон сохранения энергии утверждает, что количество энергии при любых ее превращениях остается неизменным. Но он ничего не говорит о том, какие энергетические превращения возможны. Между тем многие процессы, вполне допустимые с точки зрения закона сохранения энергии, никогда не протекают в действительности.
Закон сохранения энергии не запрещает процессы, которые на опыте не происходят:

- нагревание более нагретого тела более холодным;

Самопроизвольное раскачивание маятника из состояния покоя;

Собирание песка в камень и т.д.

Процессы в природе имеют определенную направленность. В обратном направлении самопроизвольно они протекать не могут.
Второй закон термодинамики, являясь важнейшим законом природы, определяет направление, по которому протекают термодинамические процессы, устанавливает возможные пределы превращения теплоты в работу при круговых процессах, позволяет дать строгое определение таких понятий, как энтропия, температура и т.д.

Общая характеристика и формулировка второго закона термодинамики

Естественные процессы всегда направлены в сторону достижения системой равновесного состояния (механического, термического или любого другого). Это явление отражено вторым законом термодинамики, имеющим большое значение и для анализа работы теплоэнергетических машин. В соответствии с этим законом, например, теплота самопроизвольно может переходить только от тела с большей температурой к телу с меньшей температурой. Для осуществления обратного процесса должна быть затрачена определенная работа. В связи с этим второй закон термодинамики можно сформулировать следующим образом: невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более теплым (постулат Клаузиуса, 1850 г.).

Второй закон термодинамики определяет также условия, при которых теплота может, как угодно долго преобразовываться в работу. В любом разомкнутом термодинамическом процессе при увеличении объема совершается положительная работа:

Где l – конечная работа,

V1 и v2 – соответственно начальный и конечный удельный объем;

Но процесс расширения не может продолжаться бесконечно, следовательно, возможность преобразования теплоты в работу ограничена.

Непрерывное преобразование теплоты в работу осуществляется только в круговом процессе или цикле.

Каждый элементарный процесс, входящий в цикл, осуществляется при подводе или отводе теплоты dQ, сопровождается совершением или затратой работы, увеличением или уменьшением внутренней энергии, но всегда при выполнении условия dQ=dU+dL и dq=du+dl, которое показывает, что без подвода теплоты (dq=0) внешняя работа может совершаться только за счет внутренней энергии системы, и, подвод теплоты к термодинамической системе определяется термодинамическим процессом. Интегрирование по замкнутому контуру дает:

/>, />, так как />.

Здесь Q Ц и L Ц - соответственно теплота, превращенная в цикле в работу, и работа, совершенная рабочим телом, представляющая собой разность |L 1 | - |L 2 | положительных и отрицательных работ элементарных процессов цикла.

Элементарное количество теплоты можно рассматривать как подводимое (dQ>0) и отводимое (dQ от рабочего тела. Сумма подведенной теплоты в цикле |Q1|, а сумма отведенной теплоты |Q2|. Следовательно,

L Ц =Q Ц =|Q 1 | - |Q 2 |.

Подвод количества теплоты Q1 к рабочему телу возможен при наличии внешнего источника с температурой выше температуры рабочего тела. Такой источник теплоты называется горячим. Отвод количества теплоты Q2 от рабочего тела также возможен при наличии внешнего источника теплоты, но с температурой более низкой, чем температура рабочего тела. Такой источник теплоты называется холодным. Таким образом, для совершения цикла необходимо иметь два источника теплоты: один с высокой температурой, другой с низкой. При этом не все затраченное количество теплоты Q1 может быть превращено в работу, так как количество теплоты Q2 передается холодному источнику.

Условия работы теплового двигателя сводятся к следующим:

Необходимость двух источников теплоты (горячего и холодного);

Циклическая работа двигателя;

Передача части количества теплоты, полученной от горячего источника, холодному без превращения ее в работу.

В связи с этим второму закону термодинамики можно дать еще несколько формулировок:

передача теплоты от холодного источника к горячему невозможна без затраты работы;

невозможно построить периодически действующую машину, совершающую работу и соответственно охлаждающую тепловой резервуар;

природа стремится к переходу от менее вероятных состояний к более вероятным.

Следует подчеркнуть, что второй закон термодинамики (так же как и первый), сформулирован на основе опыта.

В наиболее общем виде второй закон термодинамики может быть сформулирован следующим образом: любой реальный самопроизвольный процесс является необратимым. Все прочие формулировки второго закона являются частными случаями наиболее общей формулировки.

В.Томсон (лорд Кельвин) предложил в 1851 г. следующую формулировку: невозможно при помощи неодушевленного материального агента получить от какой-либо массы вещества механическую работу посредством охлаждения ее ниже температуры самого холодного из окружающих предметов.

М.Планк предложил формулировку более четкую, чем формулировка Томсона: невозможно построить периодически действующую машину, все действие которой сводилось бы к понятию некоторого груза и охлаждению теплового источника. Под периодически действующей машиной следует понимать двигатель, непрерывно (в циклическом процессе) превращающий теплоту в работу. В самом деле, если бы удалось построить тепловой двигатель, который просто отбирал бы теплоту от некоторого источника и непрерывно (циклично) превращал его в работу, то это противоречило бы положению о том, что работа может производиться системой только тогда, когда в этой системе отсутствует равновесие (в частности, применительно к тепловому двигателю – когда в системе имеется разность температур горячего и холодного источников).

Если бы не существовало ограничений, накладываемых вторым законом термодинамики, то это означало бы, что можно построить тепловой двигатель при наличии одного лишь источника теплоты. Такой двигатель мог бы действовать за счет охлаждения, например, воды в океане. Этот процесс мог бы продолжаться до тех пор, пока вся внутренняя энергия океана не была бы превращена в работу. Тепловую машину, которая действовала бы таким образом, В.Ф.Оствальд удачно назвал вечным двигателем второго рода (в отличие от вечного двигателя первого рода, работающего вопреки закону сохранения энергии). В соответствии со сказанным формулировка второго закона термодинамики, данная Планком, может быть видоизменена следующим образом: осуществление вечного двигателя второго рода невозможно.

Следует заметить, что существование вечного двигателя второго рода не противоречит первому закону термодинамики; в самом деле, в этом двигателе работа производилась бы не из ничего, а за счет внутренней энергии, заключенной в тепловом источнике, так, что с количественно стороны процесс получения работы из теплоты в данном случае не был бы невыполнимым. Однако существование такого двигателя невозможно с точки зрения качественной стороны процесса перехода теплоты между телами.
Понятие энтропии
Несоответствие между превращением теплоты в работу и работы в теплоту приводит к односторонней направленности реальных процессов в природе, что и отражает физический смысл второго начала термодинамики в законе о существовании и возрастании в реальных процессах некой функции, названной энтропией , определяющей меру обесценения энергии.

Часто второе начало термодинамики преподносится как объединенный принцип существования и возрастания энтропии.

Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях обратимого течения процессов:

Принцип возрастания энтропии сводится к утверждению, что энтропия изолированных систем неизменно возрастает при всяком изменении их состояния и остается постоянной лишь при обратимом течении процессов:

Оба вывода о существовании и возрастании энтропии получаются на основе какого-либо постулата, отражающего необратимость реальных процессов в природе. Наиболее часто в доказательстве объединенного принципа существования и возрастания энтропии используют постулаты Р.Клаузиуса, В.Томпсона-Кельвина, М. Планка.

В действительности принципы существования и возрастания энтропии ничего общего не имеют. Физическое содержание: принцип существования энтропии характеризует термодинамические свойства систем, а принцип возрастания энтропии – наиболее вероятное течение реальных процессов. Математическое выражение принципа существования энтропии – равенство, а принципа возрастания – неравенство. Области применения: принцип существования энтропии и вытекающие из него следствия используют для изучения физических свойств веществ, а принцип возрастания энтропии – для суждения о наиболее вероятном течении физических явлений. Философское значение этих принципов также различно.

В связи с этим принципы существования и возрастания энтропии рассматриваются раздельно и математические выражения их для любых тел получаются на базе различных постулатов.

Вывод о существовании абсолютной температуры T и энтропии s как термодинамических функций состояния любых тел и систем составляет основное содержание второго закона термодинамики и распространяется на любые процессы – обратимые и необратимые.
Стрела времени
Во всех процессах существует выделенное направление, в котором процессы идут сами собой от более упорядоченного состояния к менее упорядоченному.

Чем больше порядок в системе, тем сложнее восстановить его из беспорядка. Несравненно проще разбить стекло, чем изготовить новое и ставить его в раму. Гораздо проще убить живое существо, чем возвратить его к жизни, если это вообще возможно. «Бог сотворил маленькую букашку. Если ты ее раздавишь она умрет» такой эпиграф поставил американский биохимик Сент Дьерди к своей книге «Биоэнергетика».

Выделенное направление времени («стрела времени»), воспринимаемое нами, очевидно, связано именно с направленностью процессов в мире.
Заключение
В связи с тем, что непрерывное получение работы из теплоты возможно только при условии передачи части отбираемой от горячего источника теплоты холодному источнику, следует подчеркнуть важную особенность тепловых процессов: механическую работу, электрическую работу, работу магнитных сил и т.д. можно без остатка превратить в теплоту. Что же касается теплоты, то только часть ее может, превращена в периодически повторяющемся процессе в механическую и другие виды работ; другая ее часть неизбежно должна быть передана холодному источнику. Этой важнейшей особенностью тепловых процессов определяется то особое положение, которое занимает процесс получения работы из теплоты любых других способов получения работы (например, получения механической работы за счет кинетической энергии тела, получения электроэнергии за счет механической работы, производства работы магнитным полем за счет электроэнергии и т.д.). При каждом из этих способов преобразования часть энергии должна затрачиваться на неизбежные необратимые потери, такие как трение, электросопротивление, магнитная вязкость и др., переходя при этом в теплоту.

Список литературы:

Г.Я. Мякишев, А.З. Синяков. Молекулярная физика и термодинамика. Учебник для углубленного изучения физики, 2002

Кириллин В.А. и др. Техническая термодинамика: Учебник для вузов.- 4-е изд., перераб.- М.: Энергоатомиздат, 1983.

Основы теплотехники /В.С. Охотин, В.Ф. Жидких, В.М. Лавыгин и др.- М.: Высшая школа, 1984.

Поршаков Б.П., Романов Б.А. Основы термодинамики и теплотехники.- М.: Недра, 1988.

Теплотехника /под ред. В.И. Крутова.- М.: Машиностроение, 1986

Теплоэнергетика и теплотехника. Общие вопросы (справочник).- М.: Энергия, 1980.

© 2024 Аналитика. Религия. Мироздание. Прошлое. Сионизм